Proposed syllabus and Scheme of Examination

for

B.Sc. (Program) with Physics-Chemistry

Submitted to

University Grants Commission

New Delhi

Under

Choice Based Credit System

April 2015
Details of Courses Under Undergraduate Program (B.Sc.)

<table>
<thead>
<tr>
<th>Course</th>
<th>*Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory+ Practical</td>
</tr>
<tr>
<td>I. Core Course</td>
<td>12×4= 48</td>
</tr>
<tr>
<td>(12 Papers)</td>
<td></td>
</tr>
<tr>
<td>04 Courses from each of the</td>
<td></td>
</tr>
<tr>
<td>03 disciplines of choice</td>
<td></td>
</tr>
<tr>
<td>Core Course Practical / Tutorial*</td>
<td>12×2=24</td>
</tr>
<tr>
<td>(12 Practical/ Tutorials*)</td>
<td></td>
</tr>
<tr>
<td>04 Courses from each of the</td>
<td></td>
</tr>
<tr>
<td>03 Disciplines of choice</td>
<td></td>
</tr>
<tr>
<td>II. Elective Course</td>
<td>6×4=24</td>
</tr>
<tr>
<td>(6 Papers)</td>
<td></td>
</tr>
<tr>
<td>Two papers from each discipline of choice</td>
<td></td>
</tr>
<tr>
<td>including paper of interdisciplinary nature.</td>
<td></td>
</tr>
<tr>
<td>Elective Course Practical / Tutorials*</td>
<td>6×2=12</td>
</tr>
<tr>
<td>(6 Practical / Tutorials*)</td>
<td></td>
</tr>
<tr>
<td>Two Papers from each discipline of choice</td>
<td></td>
</tr>
<tr>
<td>including paper of interdisciplinary nature</td>
<td></td>
</tr>
<tr>
<td>• Optional Dissertation or project work in place of one Discipline elective paper (6 credits) in 6th Semester</td>
<td></td>
</tr>
</tbody>
</table>
III. Ability Enhancement Courses

1. Ability Enhancement Compulsory

(2 Papers of 2 credits each)

- Environmental Science
- English/MIL Communication

2. Skill Enhancement Course

(Skill Based)

(4 Papers of 2 credits each)

Total credit = 120

Institute should evolve a system/policy about ECA/ General Interest/Hobby/Sports/NCC/NSS/related courses on its own.

*wherever there is practical there will be no tutorials and vice-versa

Proposed scheme for choice based credit system in B. Sc. Program

<table>
<thead>
<tr>
<th>CORE COURSE (12)</th>
<th>Ability Enhancement Compulsory Course (AECC) (2)</th>
<th>Skill Enhancement Course (SEC) (2)</th>
<th>Discipline Specific Elective DSE (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Mechanics</td>
<td>(English/MIL Communication)/ Environmental Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atomic Structure, Bonding, General Organic Chemistry &</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total credit = 120
<table>
<thead>
<tr>
<th></th>
<th>Aliphatic Hydrocarbons</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DSC- 3 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Electricity, Magnetism and EMT</td>
<td>Environmental Science (English/MIL Communication)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical Energetics, Equilibria & Functional Group Organic Chemistry-I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DSC- 3 B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Thermal Physics and Statistical Mechanics</td>
<td>SEC-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solutions, Phase equilibrium, Conductance, Electrochemistry & Functional Group Organic Chemistry-II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DSC- 3 C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Waves and Optics</td>
<td></td>
<td>SEC-2</td>
</tr>
<tr>
<td></td>
<td>Chemistry of s- and p-block Elements, States of Matter & Chemical Kinetics</td>
<td></td>
<td>DSC- 3 D</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>----</td>
<td>---------</td>
</tr>
<tr>
<td>V</td>
<td></td>
<td>SEC -3</td>
<td>DSE-1 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DSE-2 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DSE-3 A</td>
</tr>
<tr>
<td>VI</td>
<td></td>
<td>SEC -4</td>
<td>DSE-1 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DSE-2 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DSE-3 B</td>
</tr>
<tr>
<td>SEMESTER</td>
<td>COURSE OPTED</td>
<td>COURSE NAME</td>
<td>Credits</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>I</td>
<td>Ability Enhancement Compulsory Course-I</td>
<td>English/MIL communications/ Environmental Science</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core Course-I</td>
<td>Mechanics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core Course-I Practical/Tutorial</td>
<td>Mechanics Lab</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core Course-II</td>
<td>Atomic Structure, Bonding, General Organic Chemistry & Aliphatic Hydrocarbons</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core Course-II Practical/ Tutorial</td>
<td>Atomic Structure, Bonding, General Organic Chemistry & Aliphatic Hydrocarbons Lab</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core Course-III</td>
<td>DSC 3A</td>
<td>6</td>
</tr>
<tr>
<td>II</td>
<td>Ability Enhancement Compulsory Course-II</td>
<td>English/MIL communications/ Environmental Science</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core Course-IV</td>
<td>Electricity, Magnetism and EMT</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core Course-IV Practical/Tutorial</td>
<td>Electricity, Magnetism and EMT Lab</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core Course-V</td>
<td>Chemical Energetics, Equilibria & Functional Group Organic Chemistry-I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core Course-V Practical/ Tutorial</td>
<td>Chemical Energetics, Equilibria & Functional Group Organic Chemistry-I Lab</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core Course-VI</td>
<td>DSC 3B</td>
<td>6</td>
</tr>
<tr>
<td>III</td>
<td>Core Course-VII</td>
<td>Thermal Physics and Statistical Mechanics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core Course-VII Practical/Tutorial</td>
<td>Thermal Physics and Statistical Mechanics Lab</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core Course-VIII</td>
<td>Solutions, Phase Equilibria, Conductance, Electrochemistry & Functional Group Organic Chemistry-II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core Course-VIII Practical/ Tutorial</td>
<td>Solutions, Phase Equilibria, Conductance, Electrochemistry & Functional Group Organic Chemistry-II Lab.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core Course-IX</td>
<td>DSC 3C</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Skill Enhancement Course -1</td>
<td>SEC-1</td>
<td>2</td>
</tr>
<tr>
<td>IV</td>
<td>Core course-X</td>
<td>Waves and Optics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Course-X Practical/Tutorial</td>
<td>Waves and Optics Lab</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core Course-XI</td>
<td>Chemistry of s- and p-block elements, States of matter & Chemical kinetics</td>
<td>4</td>
</tr>
<tr>
<td>Course-XI Practical/Tutorial</td>
<td>Chemistry of s- and p-block elements, States of matter & Chemical kinetics Lab</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Core Course-XII</td>
<td>DSC 3D</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Skill Enhancement Course -2</td>
<td>SEC -2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Skill Enhancement Course -3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Disciplne Specific Elective -1</td>
<td>DSE-1A</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Disciplne Specific Elective -2</td>
<td>DSE-2A</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Disciplne Specific Elective -3</td>
<td>DSE-3A</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>Skill Enhancement Course -4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Disciplne Specific Elective -4</td>
<td>DSE-1B</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Disciplne Specific Elective -5</td>
<td>DSE-2B</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Disciplne Specific Elective-6</td>
<td>DSE-3B</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

B.Sc. Physical Science

Core papers Physics (Credit: 06 each) (CP 1-4):

1. Mechanics (4) + Lab (4)
2. Electricity and Magnetism (4) + Lab (4)
3. Thermal Physics and Statistical Mechanics (4) + Lab (4)
4. Waves and Optics (4) + Lab (4)

Core papers Chemistry (Credit: 06 each) (CP 1-4):

1. Atomic Structure, Bonding, General Organic Chemistry & Aliphatic Hydrocarbons (4) + Lab (4)
2. Chemical Energetics, Equilibria & Functional Group Organic Chemistry-I (4) + Lab (4)
4. Chemistry of s- and p-block elements, States of matter and Chemical Kinetics (4) + Lab (4)

Discipline Specific Elective papers (Credit: 06 each) (DSE 1, DSE 2): Choose 2

Physics

1. Digital, Analog and Instrumentation (4) + Lab (4)
2. Elements of Modern Physics (4) + Lab (4)
3. Mathematical Physics (4) + Lab (4)
4. Solid State Physics (4) + Lab (4)
5. Quantum Mechanics (4) + Lab (4)
6. Embedded System: Introduction to microcontroller (4) + Lab (4)
7. Nuclear and Particle Physics (5) + Tut (1)
8. Medical Physics (4) + Lab (4)
9. Dissertation

Chemistry
1. Applications of Computers in Chemistry (4) + Lab (4)
2. Analytical Methods in Chemistry (4) + Lab (4)
3. Molecular Modelling & Drug Design (4) + Lab (4)
5. Polymer Chemistry (4) + Lab (4)
6. Research Methodology for Chemistry (5) + Tutorials (1)
7. Green Chemistry (4) + Lab (4)
8. Industrial Chemicals & Environment (4) + Lab (4)
9. Inorganic Materials of Industrial Importance (4) + Lab (4)
10. Instrumental Methods of Analysis (4) + Lab (4)
11. Chemistry of d-block elements, Quantum Chemistry and Spectroscopy (4) + Lab (4)
12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy
13. Molecules of life (4) + Lab (4)
14. Dissertation

Note: Universities may include more options or delete some from this list

Skill Enhancement Course (any four) (Credit: 02 each)- SEC 1 to SEC 4

Physics
1. Physics Workshop Skills
2. Computational Physics Skills
3. Electrical circuit network Skills
4. Basic Instrumentation Skills
5. Renewable Energy and Energy harvesting
6. Mechanical Drawing
7. Radiology and Safety
8. Applied Optics
9. Weather Forecasting

Chemistry
1. IT Skills for Chemists
2. Basic Analytical Chemistry
3. Chemical Technology & Society
4. Chemoinformatics
5. Business Skills for Chemists
6. Intellectual Property Rights
7. Analytical Clinical Biochemistry
8. Green Methods in Chemistry
9. Pharmaceutical Chemistry
10. Chemistry of Cosmetics & Perfumes
11. Pesticide Chemistry
12. Fuel Chemistry

Note: Universities may include more options or delete some from this list
Important:
1. Each University/Institute should provide a brief write-up about each paper outlining the salient features, utility, learning objectives and prerequisites.
2. University can add/delete some experiments of similar nature in the Laboratory papers.
3. The size of the practical group for practical papers is recommended to be 12-15 students.
4. University can add to the list of reference books given at the end of each paper.
Semester I

PHYSICS-DSC 1 A: MECHANICS
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Vectors: Vector algebra. Scalar and vector products. Derivatives of a vector with respect to a parameter. (4 Lectures)

Ordinary Differential Equations: 1st order homogeneous differential equations. 2nd order homogeneous differential equations with constant coefficients. (6 Lectures)

Rotational Motion: Angular velocity and angular momentum. Torque. Conservation of angular momentum. (5 Lectures)

Elasticity: Hooke’s law - Stress-strain diagram - Elastic moduli-Relation between elastic constants - Poisson’s Ratio-Expression for Poisson’s ratio in terms of elastic constants - Work done in stretching and work done in twisting a wire - Twisting couple on a cylinder - Determination of Rigidity modulus by static torsion - Torsional pendulum-Determination of Rigidity modulus and moment of inertia - q, η and σ by Searles method (8 Lectures)

Note: Students are not familiar with vector calculus. Hence all examples involve differentiation either in one dimension or with respect to the radial coordinate.

Reference Books:
- University Physics. FW Sears, MW Zemansky and HD Young13/e, 1986. Addison-Wesley

PHYSICS LAB: DSC 1A LAB: MECHANICS

60 Lectures
1. Measurements of length (or diameter) using vernier caliper, screw gauge and travelling microscope.
2. To determine the Height of a Building using a Sextant.
3. To determine the Moment of Inertia of a Flywheel.
4. To determine the Young’s Modulus of a Wire by Optical Lever Method.
5. To determine the Modulus of Rigidity of a Wire by Maxwell’s needle.
6. To determine the Elastic Constants of a Wire by Searle’s method.
7. To determine g by Bar Pendulum.
8. To determine g by Kater’s Pendulum.
9. To determine g and velocity for a freely falling body using Digital Timing Technique
10. To study the Motion of a Spring and calculate (a) Spring Constant (b) Value of g

Reference Books:
- Advanced Practical Physics for students, B.L.Flint and H.T. Worsnop, 1971, Asia Publishing House.

CHEMISTRY-DSC 2A: ATOMIC STRUCTURE, BONDING, GENERAL ORGANIC CHEMISTRY & ALIPHATIC HYDROCARBONS
(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Section A: Inorganic Chemistry-1 (30 Periods)

What is Quantum mechanics? Time independent Schrodinger equation and meaning of various terms in it. Significance of ψ and ψ^2, Schrödinger equation for hydrogen atom. Radial and angular parts of the hydogenic wavefunctions (atomic orbitals) and their variations for 1s, 2s, 2p, 3s, 3p and 3d orbitals (Only graphical representation). Radial and angular nodes and their significance. Radial distribution functions and the concept of the most probable distance with special reference to 1s and 2s atomic orbitals. Significance of quantum numbers, orbital angular momentum and quantum numbers m_l and m_s. Shapes of s, p and d atomic orbitals, nodal planes. Discovery of spin, spin quantum number (s) and magnetic spin quantum number (m_s).

Rules for filling electrons in various orbitals, Electronic configurations of the atoms. Stability of half-filled and completely filled orbitals, concept of exchange energy. Relative energies of atomic orbitals, Anomalous electronic configurations.

(14 Lectures)

Chemical Bonding and Molecular Structure

Covalent bonding: VB Approach: Shapes of some inorganic molecules and ions on the basis of VSEPR and hybridization with suitable examples of linear, trigonal planar, square planar, tetrahedral, trigonal bipyramidal and octahedral arrangements.

Concept of resonance and resonating structures in various inorganic and organic compounds.

MO Approach: Rules for the LCAO method, bonding and antibonding MOs and their characteristics for $s-s$, $s-p$ and $p-p$ combinations of atomic orbitals, nonbonding combination of orbitals, MO treatment of homonuclear diatomic molecules of 1st and 2nd periods (including idea of $s-p$ mixing) and heteronuclear diatomic molecules such as CO, NO and NO$^+$. Comparison of VB and MO approaches.

(16 Lectures)

Section B: Organic Chemistry-1 (30 Periods)

Fundamentals of Organic Chemistry

Strength of organic acids and bases: Comparative study with emphasis on factors affecting pK values. Aromaticity: Benzenoids and Hückel’s rule.

(8 Lectures)

Stereochemistry

Conformations with respect to ethane, butane and cyclohexane. Interconversion of Wedge Formula, Newmann, Sawhorse and Fischer representations. Concept of chirality (upto two carbon atoms). Configuration: Geometrical and Optical isomerism; Enantiomerism, Diastereomerism and Meso compounds). Threo and erythro; D and L; cis - trans nomenclature; CIP Rules: R/ S (for upto 2 chiral carbon atoms) and E / Z Nomenclature (for upto two C=C systems).

(10 Lectures)

Aliphatic Hydrocarbons

Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structure.

Alkenes: (Upto 5 Carbons) *Preparation:* Elimination reactions: Dehydration of alkenes and dehydrohalogenation of alkyl halides (Saytzeff’s rule); cis alkenes (Partial catalytic hydrogenation) and trans alkenes (Birch reduction). *Reactions:* cis-addition (alk. KMnO4) and trans-addition (bromine), Addition of HX (Markownikoff’s and anti-Markownikoff’s addition), Hydration, Ozonolysis, oxymecuration-demercuration, Hydroboration-oxidation.

Alkynes: (Upto 5 Carbons) *Preparation:* Acetylene from CaC2 and conversion into higher alkynes; by dehalogenation of tetra halides and dehydrohalogenation of vicinal-dihalides.

Reactions: formation of metal acetylides, addition of bromine and alkaline KMnO4, ozonolysis and oxidation with hot alk. KMnO4.

(12 Lectures)

Reference Books:

- J. D. Lee: *A new Concise Inorganic Chemistry*, E L. B. S.
CHEMISTRY LAB: DSC 2A LAB: ATOMIC STRUCTURE, BONDING, GENERAL ORGANIC CHEMISTRY & ALIPHATIC HYDROCARBONS
60 Lectures

Section A: Inorganic Chemistry - Volumetric Analysis

1. Estimation of sodium carbonate and sodium hydrogen carbonate present in a mixture.

2. Estimation of oxalic acid by titrating it with KMnO₄.

3. Estimation of water of crystallization in Mohr’s salt by titrating with KMnO₄.

4. Estimation of Fe (II) ions by titrating it with K₂Cr₂O₇ using internal indicator.

5. Estimation of Cu (II) ions iodometrically using Na₂S₂O₃.

Section B: Organic Chemistry

1. Detection of extra elements (N, S, Cl, Br, I) in organic compounds (containing upto two extra elements)

2. Separation of mixtures by Chromatography: Measure the Rf value in each case (combination of two compounds to be given)

(a) Identify and separate the components of a given mixture of 2 amino acids (glycine, aspartic acid, glutamic acid, tyrosine or any other amino acid) by paper chromatography

(b) Identify and separate the sugars present in the given mixture by paper chromatography.

Reference Books:

PHYSICS-DSC 1B: ELECTRICITY AND MAGNETISM
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Vector Analysis: Scalar and Vector product, gradient, divergence, Curl and their significance, Vector Integration, Line, surface and volume integrals of Vector fields, Gauss-divergence theorem and Stoke's theorem of vectors (statement only).

(12 Lectures)

Electrostatics: Electrostatic Field, electric flux, Gauss's theorem of electrostatics. Applications of Gauss theorem- Electric field due to point charge, infinite line of charge, uniformly charged spherical shell and solid sphere, plane charged sheet, charged conductor. Electric potential as line integral of electric field, potential due to a point charge, electric dipole, uniformly charged spherical shell and solid sphere. Calculation of electric field from potential. Capacitance of an isolated spherical conductor. Parallel plate, spherical and cylindrical condenser. Energy per unit volume in electrostatic field. Dielectric medium, Polarisation, Displacement vector. Gauss's theorem in dielectrics. Parallel plate capacitor completely filled with dielectric.

(22 Lectures)

Magnetism:

(10 Lectures)

(6 Lectures)

Maxwell’s equations and Electromagnetic wave propagation: Equation of continuity of current, Displacement current, Maxwell's equations, Poynting vector, energy density in electromagnetic field, electromagnetic wave propagation through vacuum and isotropic dielectric medium, transverse nature of EM waves, polarization.

(10 Lectures)

Reference Books:
• Electricity and Magnetism, Edward M. Purcell, 1986, McGraw-Hill Education.
• Electricity and Magnetism, D C Tayal, 1988, Himalaya Publishing House.
• University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.
• D.J. Griffiths, Introduction to Electrodynamics, 3rd Edn, 1998, Benjamin Cummings.

PHYSICS LAB- DSC 1B LAB: ELECTRICITY AND MAGNETISM
60 Lectures

1. To use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, and (d) checking electrical fuses.

2. Ballistic Galvanometer:
 (i) Measurement of charge and current sensitivity
 (ii) Measurement of CDR
 (iii) Determine a high resistance by Leakage Method
 (iv) To determine Self Inductance of a Coil by Rayleigh’s Method.

3. To compare capacitances using De’Sauty’s bridge.

5. To study the Characteristics of a Series RC Circuit.

6. To study the a series LCR circuit and determine its (a) Resonant Frequency, (b) Quality Factor

7. To study a parallel LCR circuit and determine its (a) Anti-resonant frequency and (b) Quality factor Q

8. To determine a Low Resistance by Carey Foster’s Bridge.

9. To verify the Thevenin and Norton theorem

10. To verify the Superposition, and Maximum Power Transfer Theorem

Reference Books
• Advanced Practical Physics for students, B.L.Flint & H.T.Worsnop, 1971, Asia Publishing House.

CHEMISTRY-DSC 2B: CHEMICAL ENERGETICS, EQUILIBRIA & FUNCTIONAL ORGANIC CHEMISTRY
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Section A: Physical Chemistry-1 (30 Lectures)
Chemical Energetics

Review of thermodynamics and the Laws of Thermodynamics.

Important principles and definitions of thermochemistry. Concept of standard state and standard enthalpies of formations, integral and differential enthalpies of solution and dilution. Calculation of bond energy, bond dissociation energy and resonance energy from thermochemical data. Variation of enthalpy of a reaction with temperature – Kirchhoff’s equation.

Statement of Third Law of thermodynamics and calculation of absolute entropies of substances.

(10 Lectures)

Chemical Equilibrium:

Free energy change in a chemical reaction. Thermodynamic derivation of the law of chemical equilibrium. Distinction between ΔG and ΔG°, Le Chatelier’s principle. Relationships between K_p, K_c and K_x for reactions involving ideal gases.

(8 Lectures)

Ionic Equilibria:

Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, common ion effect. Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts. Buffer solutions. Solubility and solubility product of sparingly soluble salts – applications of solubility product principle.

(12 Lectures)

Section B: Organic Chemistry-2 (30 Lectures)

Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structure.

Aromatic hydrocarbons

Preparation (Case benzene): from phenol, by decarboxylation, from acetylene, from benzene sulphonic acid.

(8 Lectures)

Alkyl and Aryl Halides
Alkyl Halides (Upto 5 Carbons) Types of Nucleophilic Substitution (S_N1, S_N2 and S_Ni) reactions.

Preparation: from alkenes and alcohols.

Aryl Halides Preparation: (Chloro, bromo and iodo-benzene case): from phenol, Sandmeyer & Gattermann reactions.

Reactions (Chlorobenzene): Aromatic nucleophilic substitution (replacement by –OH group) and effect of nitro substituent. Benzyne Mechanism: KNH_2/NH_3 (or NaNH_2/NH_3).

Reactivity and Relative strength of C-Halogen bond in alkyl, allyl, benzyl, vinyl and aryl halides.

(8 Lectures)

Alcohols, Phenols and Ethers (Upto 5 Carbons)

Ethers (aliphatic and aromatic): Cleavage of ethers with HI.

Aldehydes and ketones (aliphatic and aromatic): (Formaldehyde, acetaldehyde, acetone and benzaldehyde)

Preparation: from acid chlorides and from nitriles.

(14 Lectures)

Reference Books:
CHEMISTRY LAB- DSC 2B LAB: CHEMICAL ENERGETICS, EQUILIBRIA & FUNCTIONAL ORGANIC CHEMISTRY

60 Lectures

Section A: Physical Chemistry
Thermochemistry
1. Determination of heat capacity of calorimeter for different volumes.
2. Determination of enthalpy of neutralization of hydrochloric acid with sodium hydroxide.
3. Determination of enthalpy of ionization of acetic acid.
4. Determination of integral enthalpy of solution of salts (KNO₃, NH₄Cl).
5. Determination of enthalpy of hydration of copper sulphate.
6. Study of the solubility of benzoic acid in water and determination of ΔH.

Ionic equilibria
pH measurements

a) Measurement of pH of different solutions like aerated drinks, fruit juices, shampoos and soaps (use dilute solutions of soaps and shampoos to prevent damage to the glass electrode) using pH-meter.
b) Preparation of buffer solutions:
 (i) Sodium acetate-acetic acid
 (ii) Ammonium chloride-ammonium hydroxide

Measurement of the pH of buffer solutions and comparison of the values with theoretical values.

Section B: Organic Chemistry
1. Purification of organic compounds by crystallization (from water and alcohol) and distillation.
2. Criteria of Purity: Determination of melting and boiling points.
3. Preparations: Mechanism of various reactions involved to be discussed. Recrystallisation, determination of melting point and calculation of quantitative yields to be done.
 (a) Bromination of Phenol/Aniline
 (b) Benzoylation of amines/phenols
 (c) Oxime and 2,4 dinitrophenylhydrazone of aldehyde/ketone

Reference Books
Semester III

PHYSICS-DSC 1C: THERMAL PHYSICS AND STATISTICAL MECHANICS
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Laws of Thermodynamics:

Thermodynamic Potentials: Enthalpy, Gibbs, Helmholtz and Internal Energy functions, Maxwell’s relations & applications - Joule-Thompson Effect, Clausius-Clapeyron Equation, Expression for (C_p – C_v), C_p/C_v, TdS equations. (10 Lectures)

Kinetic Theory of Gases: Derivation of Maxwell’s law of distribution of velocities and its experimental verification, Mean free path (Zeroth Order), Transport Phenomena: Viscosity, Conduction and Diffusion (for vertical case), Law of equipartition of energy (no derivation) and its applications to specific heat of gases; mono-atomic and diatomic gases. (10 Lectures)

PHYSICS LAB-DSC 1C LAB: THERMAL PHYSICS AND STATISTICAL MECHANICS

60 Lectures
1. To determine Mechanical Equivalent of Heat, J, by Callender and Barne’s constant flow method.
3. To determine Stefan’s Constant.
4. To determine the coefficient of thermal conductivity of copper by Searle’s Apparatus.
5. To determine the Coefficient of Thermal Conductivity of Cu by Angstrom’s Method.
6. To determine the coefficient of thermal conductivity of a bad conductor by Lee and Charlton’s disc method.
7. To determine the temperature co-efficient of resistance by Platinum resistance thermometer.
8. To study the variation of thermo emf across two junctions of a thermocouple with temperature.
9. To record and analyze the cooling temperature of an hot object as a function of time using a thermocouple and suitable data acquisition system
10. To calibrate Resistance Temperature Device (RTD) using Null Method/Off-Balance Bridge

Reference Books:
- Advanced Practical Physics for students, B.L.Flint & H.T.Worsnop, 1971, Asia Publishing House.

CHEMISTRY-DSC 2C: SOLUTIONS, PHASE EQUILIBRIUM, CONDUCTANCE, ELECTROCHEMISTRY & FUNCTIONAL GROUP ORGANIC CHEMISTRY-II
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Section A: Physical Chemistry-2 (30 Lectures)

Solutions

Phase Equilibrium

Phases, components and degrees of freedom of a system, criteria of phase equilibrium. Gibbs Phase Rule and its thermodynamic derivation. Derivation of Clausius – Clapeyron equation and its importance in phase equilibria. Phase diagrams of one-component systems (water and sulphur) and two component systems involving eutectics, congruent and incongruent melting points (lead-silver, FeCl₃-H₂O and Na-K only).

Conductance

Conductivity, equivalent and molar conductivity and their variation with dilution for weak and strong electrolytes. Kohlrausch law of independent migration of ions.

Electrochemistry

Calculation of equilibrium constant from EMF data. Concentration cells with transference and without transference. Liquid junction potential and salt bridge.

pH determination using hydrogen electrode and quinhydrone electrode.

Potentiometric titrations -qualitative treatment (acid-base and oxidation-reduction only).

Section B: Organic Chemistry-3 (30 Lectures)
Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structure.

Carboxylic acids and their derivatives

Carboxylic acids (aliphatic and aromatic)

Preparation: Acidic and Alkaline hydrolysis of esters.

Reactions: Hell – Vohlard - Zelinsky Reaction.

Carboxylic acid derivatives (aliphatic): (Upto 5 carbons)

Preparation: Acid chlorides, Anhydrides, Esters and Amides from acids and their interconversion.

(6 Lectures)

Amines and Diazonium Salts

Amines (Aliphatic and Aromatic): (Upto 5 carbons)

Preparation: from alkyl halides, Gabriel’s Phthalimide synthesis, Hofmann Bromamide reaction.

Diazonium salts: Preparation: from aromatic amines.

Reactions: conversion to benzene, phenol, dyes.

(6 Lectures)

Amino Acids, Peptides and Proteins:

Reactions of Amino acids: ester of –COOH group, acetylation of –NH₂ group, complexation with Cu²⁺ ions, ninhydrin test.

Overview of Primary, Secondary, Tertiary and Quaternary Structure of proteins.

Determination of Primary structure of Peptides by degradation Edmann degradation (N-terminal) and C–terminal (thiohydantoin and with carboxypeptidase enzyme). Synthesis
of simple peptides (upto dipeptides) by N-protection (t-butyloxycarbonyl and phthaloyl) & C-activating groups and Merrifield solid-phase synthesis.

(10 Lectures)

Carbohydrates: Classification, and General Properties, Glucose and Fructose (open chain and cyclic structure), Determination of configuration of monosaccharides, absolute configuration of Glucose and Fructose, Mutarotation, ascending and descending in monosaccharides. Structure of disacharrides (sucrose, cellobiose, maltose, lactose) and polysacharrides (starch and cellulose) excluding their structure elucidation.

(8 Lectures)

Reference Books:
- Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

CHEMISTRY LAB-DSC 2C LAB: SOLUTIONS, PHASE EQUILIBRIUM, CONDUCTANCE, ELECTROCHEMISTRY & BIOMOLECULES

60 Lectures

Section A: Physical Chemistry

Distribution

Study of the equilibrium of one of the following reactions by the distribution method:

\[\text{I}_2(\text{aq}) + \Gamma(\text{aq}) \rightleftharpoons \text{I}_3(\text{aq}) \]

\[\text{Cu}^{2+}(\text{aq}) + x\text{NH}_2(\text{aq}) \rightleftharpoons [\text{Cu}({\text{NH}_3})_x]^{2+} \]

Phase equilibria
a) Construction of the phase diagram of a binary system (simple eutectic) using cooling curves.
b) Determination of the critical solution temperature and composition of the phenol water system and study of the effect of impurities on it.
c) Study of the variation of mutual solubility temperature with concentration for the phenol water system and determination of the critical solubility temperature.

Conductance

I. Determination of cell constant
II. Determination of equivalent conductance, degree of dissociation and dissociation constant of a weak acid.
III. Perform the following conductometric titrations:
 i. Strong acid vs. strong base
 ii. Weak acid vs. strong base

Potentiometry

Perform the following potentiometric titrations:
i. Strong acid vs. strong base
ii. Weak acid vs. strong base
iii. Potassium dichromate vs. Mohr's salt

Section B: Organic Chemistry

I. Systematic Qualitative Organic Analysis of Organic Compounds possessing monofunctional groups (-COOH, phenolic, aldehydic, ketonic, amide, nitro, amines) and preparation of one derivative.

II

1. Separation of amino acids by paper chromatography
2. Determination of the concentration of glycine solution by formylation method.
3. Titration curve of glycine
4. Action of salivary amylase on starch
5. Effect of temperature on the action of salivary amylase on starch.
6. Differentiation between a reducing/nonreducing sugar.

Reference Books:

- B.D. Khosla: Senior Practical Physical Chemistry, R. Chand & Co.

Semester IV
PHYSICS-DSC 1D: WAVES AND OPTICS
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Superposition of Two Collinear Harmonic oscillations: Linearity and Superposition Principle. (1) Oscillations having equal frequencies and (2) Oscillations having different frequencies (Beats). (4 Lectures)

Superposition of Two Perpendicular Harmonic Oscillations: Graphical and Analytical Methods. Lissajous Figures (1:1 and 1:2) and their uses. (2 Lectures)

Sound: Simple harmonic motion - forced vibrations and resonance - Fourier’s Theorem - Application to saw tooth wave and square wave - Intensity and loudness of sound - Decibels - Intensity levels - musical notes - musical scale. Acoustics of buildings: Reverberation and time of reverberation - Absorption coefficient - Sabine’s formula - measurement of reverberation time - Acoustic aspects of halls and auditoria. (6 Lectures)

Michelson’s Interferometer: (1) Idea of form of fringes (no theory needed), (2) Determination of wavelength,(3) Wavelength difference,(4) Refractive index, (5) Visibility of fringes. (3 Lectures)

Polarization: Transverse nature of light waves. Plane polarized light – production and analysis. Circular and elliptical polarization. (5 Lectures)

Reference Books:
- Principles of Optics, B.K. Mathur, 1995, Gopal Printing
- UniversityPhysics.FWSears,MWZemanskyandHDYoung13/e, 1986.Addison-Wesley

PHYSICS LAB-DSC 1D LAB: WAVES AND OPTICS

60 Lectures

1. To investigate the motion of coupled oscillators
2. To determine the Frequency of an Electrically Maintained Tuning Fork by Melde’s Experiment and to verify $\lambda^2 - T$ Law.
3. To study Lissajous Figures
4. Familiarization with Schuster’s focussing; determination of angle of prism.
5. To determine the Coefficient of Viscosity of water by Capillary Flow Method (Poiseuille’s method).
6. To determine the Refractive Index of the Material of a given Prism using Sodium Light.
7. To determine Dispersive Power of the Material of a given Prism using Mercury Light
8. To determine the value of Cauchy Constants of a material of a prism.
10. To determine wavelength of sodium light using Fresnel Biprism.
12. To determine the wavelength of Laser light using Diffraction of Single Slit.
13. To determine wavelength of (1) Sodium & (2) Mercury light using plane diffraction Grating
15. To measure the intensity using photosensor and laser in diffraction patterns of single and double slits.

Reference Books:
- Advanced Practical Physics for students, B.L.Flint & H.T.Worsnop, 1971, Asia Publishing House.
CHEMISTRY-DSC 2D: CHEMISTRY OF S- AND P-BLOCK ELEMENTS, STATES OF MATTER & CHEMICAL KINETICS
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

General Principles of Metallurgy

Chief modes of occurrence of metals based on standard electrode potentials. Ellingham diagrams for reduction of metal oxides using carbon as reducing agent.

Hydrometallurgy, Methods of purification of metals (Al, Pb, Ti, Fe, Cu, Ni, Zn): electrolytic, oxidative refining, Kroll process, Parting process, van Arkel-de Boer process and Mond’s process.

(s- and p-Block Elements)

Periodicity in s- and p-block elements with respect to electronic configuration, atomic and ionic size, ionization enthalpy, electronegativity (Pauling, Mulliken, and Alfred-Rochow scales). Allotropy in C, S, and P.

Oxidation states with reference to elements in unusual and rare oxidation states like carbides and nitrides), inert pair effect, diagonal relationship and anomalous behaviour of first member of each group.

Compounds of s- and p-Block Elements

Hydrides and their classification (ionic, covalent and interstitial), structure and properties with respect to stability of hydrides of p-block elements.

Concept of multicentre bonding (diborane).

Structure, bonding and their important properties like oxidation/reduction, acidic/basic nature of the following compounds and their applications in industrial, organic and environmental chemistry.

Hydrides of nitrogen (NH₃, N₂H₄, N₃H, NH₂OH)

Oxoacids of P, S and Cl.

Halides and oxohalides: PCl₃, PCl₅, SOCl₂ and SO₂Cl₂
Section B: Physical Chemistry-3 (30 Lectures)

Kinetic Theory of Gases

Postulates of Kinetic Theory of Gases and derivation of the kinetic gas equation.

Deviation of real gases from ideal behaviour, compressibility factor, causes of deviation. van der Waals equation of state for real gases. Boyle temperature (derivation not required). Critical phenomena, critical constants and their calculation from van der Waals equation. Andrews isotherms of CO₂.

Maxwell Boltzmann distribution laws of molecular velocities and molecular energies (graphic representation – derivation not required) and their importance.

Temperature dependence of these distributions. Most probable, average and root mean square velocities (no derivation). Collision cross section, collision number, collision frequency, collision diameter and mean free path of molecules. Viscosity of gases and effect of temperature and pressure on coefficient of viscosity (qualitative treatment only).

Liquids

Surface tension and its determination using stalagmometer. Viscosity of a liquid and determination of coefficient of viscosity using Ostwald viscometer. Effect of temperature on surface tension and coefficient of viscosity of a liquid (qualitative treatment only)

Solids

Chemical Kinetics

Theories of Reaction Rates: Collision theory and Activated Complex theory of bimolecular reactions. Comparison of the two theories (qualitative treatment only).

Reference Books:

CHEMISTRY LAB-DSC 2D LAB: CHEMISTRY OF S- AND P-BLOCK ELEMENTS, STATES OF MATTER & CHEMICAL KINETICS
60 Lectures

Section A: Inorganic Chemistry

Semi-micro qualitative analysis using H2S of mixtures- not more than four ionic species (two anions and two cations and excluding insoluble salts) out of the following:

Cations : NH4+, Pb2+, Ag+, Bi3+, Cu2+, Cd2+, Sn2+, Fe3+, Al3+, Co2+, Cr3+, Ni2+, Mn2+, Zn2+, Ba2+, Sr2+, Ca2+, K+
Anions : CO32–, S2–, SO32–, S2O32–, NO3–, CH3COO–, Cl–, Br–, I–, NO3–, SO42–, PO43–, BO33–, C2O42–, F–

(Spot tests should be carried out wherever feasible)

Section B: Physical Chemistry

(I) Surface tension measurement (use of organic solvents excluded).

 a) Determination of the surface tension of a liquid or a dilute solution using a stalagmometer.
 b) Study of the variation of surface tension of a detergent solution with concentration.

(II) Viscosity measurement (use of organic solvents excluded).

 a) Determination of the relative and absolute viscosity of a liquid or dilute solution using an Ostwald’s viscometer.
 b) Study of the variation of viscosity of an aqueous solution with concentration of solute.

(III) Chemical Kinetics

Study the kinetics of the following reactions.
 1. Initial rate method: Iodide-persulphate reaction
2. Integrated rate method:
 a. Acid hydrolysis of methyl acetate with hydrochloric acid.
 b. Saponification of ethyl acetate.
 c. Compare the strengths of HCl and H\textsubscript{2}SO\textsubscript{4} by studying kinetics of hydrolysis of methyl acetate

Reference Books:
- A.I. Vogel, Qualitative Inorganic Analysis, Prentice Hall, 7th Edn.
- B.D. Khosla, Senior Practical Physical Chemistry, R. Chand & Co.

Discipline Specific Elective
Select two papers

Physics

PHYSICS- DSE: DIGITAL AND ANALOG CIRCUITS AND INSTRUMENTATION
(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

UNIT-1: Digital Circuits

(4 Lectures)

(5 Lectures)

(4 Lectures)

UNIT-2: Semiconductor Devices and Amplifiers:

(5 Lectures)

Bipolar Junction transistors: n-p-n and p-n-p Transistors. Characteristics of CB, CE and CC Configurations. Current gains α and β. Relations between α and β. Load Line analysis

(12 Lectures)

UNIT-3: Operational Amplifiers (Black Box approach):

(13 Lectures)

Sinusoidal Oscillators: Barkhausen's Criterion for Self-sustained Oscillations. Determination of Frequency of RC Oscillator

(5 Lectures)

UNIT-4: Instrumentations:
Introduction to CRO: Block Diagram of CRO. Applications of CRO: (1) Study of Waveform, (2) Measurement of Voltage, Current, Frequency, and Phase Difference.

(3 Lectures)

Power Supply: Half-wave Rectifiers. Centre-tapped and Bridge Full-wave Rectifiers Calculation of Ripple Factor and Rectification Efficiency, Basic idea about capacitor filter, Zener Diode and Voltage Regulation

(6 Lectures)

Timer IC: IC 555 Pin diagram and its application as Astable & Monostable Multivibrator

(3 Lectures)

Reference Books:
• Electronic devices and circuits, S. Salivahanan and N.Suresh Kumar, 2012, Tata Mc-Graw Hill.
• Modern Electronic Instrumentation & Measurement Tech., Helfrick&Cooper, 1990, PHI Learning
• OP-AMP and Linear Digital Circuits, R.A. Gayakwad, 2000, PHI Learning Pvt. Ltd.

PRACTICALS - DSE LAB: DIGITAL AND ANALOG CIRCUITS AND INSTRUMENTS
60 Lectures
1. To measure (a) Voltage, and (b) Frequency of a periodic waveform using a CRO
2. To verify and design AND, OR, NOT and XOR gates using NAND gates.
3. To minimize a given logic circuit.
4. Half adder, Full adder and 4-bit Binary Adder.
5. Adder-Subtractor using Full Adder I.C.
6. To design an astable multivibrator of given specifications using 555 Timer.
7. To design a monostable multivibrator of given specifications using 555 Timer.
8. To study IV characteristics of PN diode, Zener and Light emitting diode
9. To study the characteristics of a Transistor in CE configuration.
10. To design a CE amplifier of a given gain (mid-gain) using voltage divider bias.
11. To design an inverting amplifier of given gain using Op-amp 741 and study its frequency response.
12. To design a non-inverting amplifier of given gain using Op-amp 741 and study its Frequency Response.
14. To investigate the use of an op-amp as a Differentiator
15. To design a Wien Bridge Oscillator using an op-amp.

Reference Books:

PHYSICS- DSE: ELEMENTS OF MODERN PHYSICS
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Planck’s quantum, Planck’s constant and light as a collection of photons; Photo-electric effect and Compton scattering. De Broglie wavelength and matter waves; Davisson-Germer experiment. (8 Lectures)
Problems with Rutherford model- instability of atoms and observation of discrete atomic spectra; Bohr's quantization rule and atomic stability; calculation of energy levels for hydrogen like atoms and their spectra. (4 Lectures)

Position measurement- gamma ray microscope thought experiment; Wave-particle duality, Heisenberg uncertainty principle- impossibility of a particle following a trajectory; Estimating minimum energy of a confined particle using uncertainty principle; Energy-time uncertainty principle. (4 Lectures)

Two slit interference experiment with photons, atoms and particles; linear superposition principle as a consequence; Matter waves and wave amplitude; Schrodinger equation for non-relativistic particles; Momentum and Energy operators; stationary states; physical
interpretation of wavefunction, probabilities and normalization; Probability and probability current densities in one dimension. \textit{11 Lectures)}

One dimensional infinitely rigid box- energy eigenvalues and eigenfunctions, normalization; Quantum dot as an example; Quantum mechanical scattering and tunnelling in one dimension - across a step potential and across a rectangular potential barrier. \textit{(12 Lectures)}

Size and structure of atomic nucleus and its relation with atomic weight; Impossibility of an electron being in the nucleus as a consequence of the uncertainty principle. Nature of nuclear force, NZ graph, semi-empirical mass formula and binding energy. \textit{(6 Lectures)}

Radioactivity: stability of nucleus; Law of radioactive decay; Mean life & half-life; α decay; β decay - energy released, spectrum and Pauli's prediction of neutrino; γ-ray emission. \textit{(11 Lectures)}

Fission and fusion - mass deficit, relativity and generation of energy; Fission - nature of fragments and emission of neutrons. Nuclear reactor: slow neutrons interacting with Uranium 235; Fusion and thermonuclear reactions. \textit{(4 Lectures)}

\textbf{Reference Books:}
- Six Ideas that Shaped Physics:Particle Behave like Waves, Thomas A. Moore, 2003, McGraw Hill

\textbf{PRACTICALS -DSE-1 LAB: ELEMENTS OF MODERN PHYSICS}

\textbf{60 Lectures}

1. To determine value of Boltzmann constant using V-I characteristic of PN diode.
2. To determine work function of material of filament of directly heated vacuum diode.
3. To determine value of Planck’s constant using LEDs of at least 4 different colours.
4. To determine the ionization potential of mercury.
5. To determine the wavelength of H-alpha emission line of Hydrogen atom.
6. To determine the absorption lines in the rotational spectrum of Iodine vapour.
7. To study the diffraction patterns of single and double slits using laser source and measure its intensity variation using Photosensor and compare with incoherent source – Na light.
7. Photo-electric effect: photo current versus intensity and wavelength of light; maximum energy of photo-electrons versus frequency of light.
8. To determine the value of \(e/m \) by magnetic focusing.
9. To setup the Millikan oil drop apparatus and determine the charge of an electron.

Reference Books:
- Advanced Practical Physics for students, B.L.Flint & H.T.Worsnop, 1971, Asia Publishing House.

PHYSICS-DSE: MATHEMATICAL PHYSICS

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

The emphasis of the course is on applications in solving problems of interest to physicists. The students are to be examined entirely on the basis of problems, seen and unseen.

- **Calculus of functions of more than one variable:** Partial derivatives, exact and inexact differentials. Integrating factor, with simple illustration. Constrained Maximization using Lagrange Multipliers.
 - *(6 Lectures)*

 - *(10 Lectures)*

 - *(16 Lectures)*

- **Some Special Integrals:** Beta and Gamma Functions and Relation between them. Expression of Integrals in terms of Gamma Functions. Error Function (Probability Integral).
 - *(4 Lectures)*

- **Partial Differential Equations:** Solutions to partial differential equations, using separation of variables: Laplace's Equation in problems of rectangular, cylindrical and spherical symmetry.
 - *(10 Lectures)*

(14 Lectures)

Reference Books:

PRACTICALS - DSE LAB: MATHEMATICAL PHYSICS
60 Lectures

The aim of this course is not just to teach computer programming and numerical analysis but to emphasize its role in solving problems in Physics.

- Highlights the use of computational methods to solve physical problems
- Use of computer language as a tool in solving physics problems (applications)
- The course will consist of lectures (both theory and practical) in the Computer Lab
- Evaluation done not on the programming but on the basis of formulating the problem
- Aim at teaching students to construct the computational problem to be solved
- Students can use anyone operating system Linux or Microsoft Windows

<table>
<thead>
<tr>
<th>Topics</th>
<th>Description with Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction and Overview</td>
<td>Computer architecture and organization, memory and Input/output devices</td>
</tr>
<tr>
<td>Basics of scientific computing</td>
<td>Binary and decimal arithmetic, Floating point numbers, algorithms, Sequence, Selection and Repetition, single and double precision arithmetic, underflow & overflow-emphasize the importance of making equations in terms of dimensionless variables, Iterative methods</td>
</tr>
</tbody>
</table>
Errors and error Analysis | Truncation and round off errors, Absolute and relative errors, Floating point computations.
---|---
Programs: | Sum & average of a list of numbers, largest of a given list of numbers and its location in the list, sorting of numbers in ascending-descending order, Binary search
Random number generation | Area of circle, area of square, volume of sphere, value of \(\pi \)
Solution of Algebraic and Transcendental equations by Bisection, Newton Raphson and Secant methods | Solution of linear and quadratic equation, solving \(\alpha=\tan \alpha; I=I_o[(\sin \alpha)/\alpha]^2 \) in optics
Interpolation by Newton Gregory Forward and Backward difference formula, Error estimation of linear interpolation | Evaluation of trigonometric functions e.g. \(\sin \theta, \cos \theta, \tan \theta, \) etc.
Numerical differentiation (Forward and Backward difference formula) and Integration (Trapezoidal and Simpson rules), Monte Carlo method | Given Position with equidistant time data to calculate velocity and acceleration and vice-versa. Find the area of B-H Hysteresis loop

1. Solve the coupled first order differential equations

\[
\frac{dx}{dt} = y + x - \frac{x^3}{3}, \quad \frac{dy}{dt} = -x,
\]

for four initial conditions \(x(0) = 0, \ y(0) = -1, -2, -3, -4. \) Plot \(x \) vs \(y \) for each of the four initial conditions on the same screen for \(0 \leq t \leq 15. \)

2. The ordinary differential equation describing the motion of a pendulum is

\[
\ddot{\theta} = -\sin(\theta)
\]

The pendulum is released from rest at an angular displacement \(\alpha \) i.e. \(\dot{\theta}(0) = \alpha, \ \ \ \ \dot{\theta}(0) = 0. \) Use the RK4 method to solve the equation for \(\alpha = 0.1, 0.5 \) and 1.0.
and plot θ as a function of time in the range $0 \leq t \leq 8\pi$. Also, plot the analytic solution valid in the small θ ($\sin(\theta) \approx \theta$).

Reference Books:

- A first course in Numerical Methods, Uri M. Ascher and Chen Greif, 2012, PHI Learning
- An Introduction to Computational Physics, T.Pang, 2nd Edn., 2006, Cambridge Univ. Press

PHYSICS-DSE: SOLID STATE PHYSICS
(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

(12 Lectures)

(10 Lectures)

(12 Lectures)

(10 Lectures)

(10 Lectures)

(6 Lectures)

Reference Books:
- Introduction to Solid State Physics, Charles Kittel, 8th Ed., 2004, Wiley India Pvt. Ltd.
- Solid-state Physics, H.Ibach and H Luth, 2009, Springer
- Elementary Solid State Physics, 1/e M. Ali Omar, 1999, Pearson India

PRACTICALS-DSE LAB: SOLID STATE PHYSICS

60 Lectures

1. Measurement of susceptibility of paramagnetic solution (Quinck’s Tube Method)
2. To measure the Magnetic susceptibility of Solids.
3. To determine the Coupling Coefficient of a Piezoelectric crystal.
4. To measure the Dielectric Constant of a dielectric Materials with frequency
5. To determine the complex dielectric constant and plasma frequency of metal using Surface Plasmon resonance (SPR)
6. To determine the refractive index of a dielectric layer using SPR
7. To study the PE Hysteresis loop of a Ferroelectric Crystal.
8. To draw the BH curve of iron using a Solenoid and determine the energy loss from Hysteresis.
9. To measure the resistivity of a semiconductor (Ge) crystal with temperature by four-probe method (from room temperature to 150 °C) and to determine its band gap.
10. To determine the Hall coefficient of a semiconductor sample.
Reference Books
- Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House
- A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11th Ed., 2011, Kitab Mahal, New Delhi

PHYSICS-DSE: QUANTUM MECHANICS
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

(6 Lectures)

Time independent Schrodinger equation: Hamiltonian, stationary states and energy eigenvalues; expansion of an arbitrary wavefunction as a linear combination of energy eigenfunctions; General solution of the time dependent Schrodinger equation in terms of linear combinations of stationary states; Application to the spread of Gaussian wavepacket for a free particle in one dimension; wave packets, Fourier transforms and momentum space wavefunction; Position-momentum uncertainty principle.

(10 Lectures)

General discussion of bound states in an arbitrary potential- continuity of wave function, boundary condition and emergence of discrete energy levels; application to one-dimensional problem- square well potential; Quantum mechanics of simple harmonic oscillator-energy levels and energy eigenfunctions using Frobenius method.

(12 Lectures)

Quantum theory of hydrogen-like atoms: time independent Schrodinger equation in spherical polar coordinates; separation of variables for the second order partial differential equation; angular momentum operator and quantum numbers; Radial wavefunctions from Frobenius method; Orbital angular momentum quantum numbers l and m; s, p, d,.. shells (idea only)

(10 Lectures)

Moment and Magnetic Energy, Gyromagnetic Ratio and Bohr Magneton.
(8 Lectures)

Atoms in External Magnetic Fields: - Normal and Anomalous Zeeman Effect.
(4 Lectures)

(10 Lectures)

Reference Books:
- Quantum Mechanics, Bruce Cameron Reed, 2008, Jones and Bartlett Learning.

Additional Books for Reference
- Introduction to Quantum Mechanics, David J. Griffith, 2nd Ed. 2005, Pearson Education

PRACTICAL-DSE LAB: QUANTUM MECHANICS

60 Lectures

Use C/C++/Scilab for solving the following problems based on Quantum Mechanics like

1. Solve the s-wave Schrödinger equation for the ground state and the first excited state of the hydrogen atom:

\[
\frac{d^2 u}{dr^2} + A(r)u(r), \quad A(r) = \frac{2m}{\hbar^2} \left[V(r) - E \right] \text{ where } V(r) = -\frac{e^2}{r}.
\]

Here, \(m \) is the reduced mass of the electron. Obtain the energy eigenvalues and plot the corresponding wavefunctions. Remember that the ground state energy of the hydrogen atom is \(\approx -13.6 \text{ eV} \). Take \(e = 3.795 \text{ (eVÅ)}^{1/2} \), \(\hbar c = 1973 \text{ (eVÅ)} \) and \(m = 0.511 \text{ x} 10^6 \text{ eV/c}^2 \).

2. Solve the s-wave radial Schrödinger equation for an atom:

\[
\frac{d^2 u}{dr^2} + A(r)u(r), \quad A(r) = \frac{2m}{\hbar^2} \left[V(r) - E \right].
\]
Where \(m \) is the reduced mass of the system (which can be chosen to be the mass of an electron), for the screened coulomb potential

\[
V(r) = -\frac{e^2}{r} e^{-r/a}
\]

Find the energy (in eV) of the ground state of the atom to an accuracy of three significant digits. Also, plot the corresponding wavefunction. Take \(e = 3.795 \) (eVÅ)\(^{1/2}\), \(m = 0.511 \times 10^6 \) eV/c\(^2\), and \(a = 3 \) Å, 5 Å, 7 Å. In these units \(\hbar c = 1973 \) (eVÅ). The ground state energy is expected to be above -12 eV in all three cases.

3. Solve the s-wave radial Schrodinger equation for a particle of mass \(m \):

\[
\frac{d^2y}{dr^2} = A(r)u(r), A(r) = \frac{2m}{\hbar^2} [V(r) - E]
\]

For the anharmonic oscillator potential

\[
V(r) = \frac{1}{2} kr^2 + \frac{1}{3} br^3
\]

for the ground state energy (in MeV) of the particle to an accuracy of three significant digits. Also, plot the corresponding wave function. Choose \(m = 940 \) MeV/c\(^2\), \(k = 100 \) MeV fm\(^{-2}\), \(b = 0, 10, 30 \) MeV fm\(^{-3}\) in these units, \(\hbar c = 197.3 \) MeV fm. The ground state energy is expected to lie between 90 and 110 MeV for all three cases.

4. Solve the s-wave radial Schrodinger equation for the vibrations of hydrogen molecule:

\[
\frac{d^2y}{dr^2} = A(r)u(r), A(r) = \frac{2\mu}{\hbar^2} [V(r) - E]
\]

where \(\mu \) is the reduced mass of the two-atom system for the Morse potential

\[
V(r) = D(e^{-2ar'} - e^{-ar'}), \quad r' = \frac{r - r_0}{r}
\]

Find the lowest vibrational energy (in MeV) of the molecule to an accuracy of three significant digits. Also, plot the corresponding wave function. Take: \(m = 940 \times 10^6 \) eV/C\(^2\), \(D = 0.755501 \) eV, \(a = 1.44 \), \(r_0 = 0.131349 \) Å

Laboratory based experiments:

5. Study of Electron spin resonance- determine magnetic field as a function of the resonance frequency
6. Study of Zeeman effect: with external magnetic field; Hyperfine splitting
7. To study the quantum tunnelling effect with solid state device, e.g. tunnelling current in backward diode or tunnel diode.

Reference Books:
- Quantum Mechanics, Bruce Cameron Reed, 2008, Jones and Bartlett Learning.

PHYSICS-DSE: EMBEDDED SYSTEM: INTRODUCTION TO MICROCONTROLLERS

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Embedded system introduction: Introduction to embedded systems and general purpose computer systems, architecture of embedded system, classifications, applications and purpose of embedded systems, challenges and design issues in embedded systems, operational and non-operational quality attributes of embedded systems, elemental description of embedded processors and microcontrollers.

(6 Lectures)

Review of microprocessors: Organization of Microprocessor based system, 8085µp pin diagram and architecture, concept of data bus and address bus, 8085 programming model, instruction classification, subroutines, stacks and its implementation, delay subroutines, hardware and software interrupts.

(4 Lectures)

8051 microcontroller: Introduction and block diagram of 8051 microcontroller, architecture of 8051, overview of 8051 family, 8051 assembly language programming, Program Counter and ROM memory map, Data types and directives, Flag bits and Program Status Word (PSW) register, Jump, loop and call instructions.

(12 Lectures)

8051 I/O port programming: Introduction of I/O port programming, pin out diagram of 8051 microcontroller, I/O port pins description and their functions, I/O port programming in 8051, (Using Assembly Language), I/O programming: Bit manipulation.

(4 Lectures)
Programming of 8051: 8051 addressing modes and accessing memory using various addressing modes, assembly language instructions using each addressing mode, arithmetic & logic instructions, 8051 programming in C:- for time delay and I/O operations and manipulation, for arithmetic & logic operations, for ASCII and BCD conversions. (12 Lectures)

Timer and counter programming: Programming 8051 timers, counter programming. (3 Lectures)

Serial port programming with and without interrupt: Introduction to 8051 interrupts, programming timer interrupts, programming external hardware interrupts and serial communication interrupt, interrupt priority in the 8051. (6 Lectures)

Interfacing 8051 microcontroller to peripherals: Parallel and serial ADC, DAC interfacing, LCD interfacing. (2 Lectures)

Programming Embedded Systems: Structure of embedded program, infinite loop, compiling, linking and locating, downloading and debugging. (3 Lectures)

Embedded system design and development: Embedded system development environment, file types generated after cross compilation, disassembler/ decompiler, simulator, emulator and debugging, embedded product development life-cycle, trends in embedded industry. (8 Lectures)

Reference Books:
- Embedded Systems: Design & applications, 1/e S.F. Barrett, 2008, Pearson Education India
- Embedded Microcomputer systems: Real time interfacing, J.W.Valvano 2011,Cengage Learning

PRACTICALS- DSE LAB: EMBEDDED SYSTEM: INTRODUCTION TO MICROCONTROLLERS
60 Lectures

Following experiments using 8051:

1. To find that the given numbers is prime or not.
2. To find the factorial of a number.
3. Write a program to make the two numbers equal by increasing the smallest number and decreasing the largest number.
4. Use one of the four ports of 8051 for O/P interfaced to eight LED’s. Simulate binary counter (8 bit) on LED’s.
5. Program to glow first four LED then next four using TIMER application.
6. Program to rotate the contents of the accumulator first right and then left.
7. Program to run a countdown from 9-0 in the seven segment LED display.
8. To interface seven segment LED display with 8051 microcontroller and display ‘HELP’ in the seven segment LED display.
9. To toggle ‘1234’ as ‘1324’ in the seven segment LED.
10. Interface stepper motor with 8051 and write a program to move the motor through a given angle in clock wise or counter clockwise direction.
11. Application of embedded systems: Temperature measurement, some information on LCD display, interfacing a keyboard.

Reference Books:
- Embedded Microcomputer systems: Real time interfacing, J.W.Valvano 2011,Cengage Learning

PHYSICS-DSE: Nuclear & Particle Physics

(Credits: Theory-05, Tutorials-01)

Theory: 75 Lectures

General Properties of Nuclei: Constituents of nucleus and their Intrinsic properties, quantitative facts about size, mass, charge density (matter energy), binding energy, average binding energy and its variation with mass number, main features of binding energy versus mass number curve, N/A plot, angular momentum, parity, magnetic moment, electric moments, nuclear excites states. (10 Lectures)

Nuclear Models: Liquid drop model approach, semi empirical mass formula and significance of various terms, condition of nuclear stability. Two nucleon separation energies, Fermi gas model (degenerate fermion gas, nuclear symmetry potential in Fermi gas), evidence for nuclear shell structure, nuclear magic numbers, basic assumption of shell model, concept of mean field, residual interaction, concept of nuclear force. (12 Lectures)
Radioactivity decay: (a) Alpha decay: basics of α-decay processes, theory of α-emission, Gamow factor, Geiger Nuttall law, α-decay spectroscopy. (b) β-decay: energy kinematics for β-decay, positron emission, electron capture, neutrino hypothesis. (c) Gamma decay: Gamma rays emission & kinematics, internal conversion.

(9 Lectures)

Nuclear Reactions: Types of Reactions, Conservation Laws, kinematics of reactions, Q-value, reaction rate, reaction cross section, Concept of compound and direct reaction, resonance reaction, Coulomb scattering (Rutherford scattering).

(8 Lectures)

Nuclear Astrophysics: Early universe, primordial nucleosynthesis (particle nuclear interactions), stellar nucleosynthesis, concept of gamow window, heavy element production: r- and s- process path.

(5 Lectures)

Interaction of Nuclear Radiation with matter: Energy loss due to ionization (Bethe-Block formula), energy loss of electrons, Cerenkov radiation, Gamma ray interaction through matter, photoelectric effect, Compton scattering, pair production, neutron interaction with matter.

(6 Lectures)

Detector for Nuclear Radiations: Gas detectors: estimation of electric field, mobility of particle, for ionization chamber and GM Counter. Basic principle of Scintillation Detectors and construction of photo-multiplier tube (PMT). Semiconductor Detectors (Si & Ge) for charge particle and photon detection (concept of charge carrier and mobility).

(6 Lectures)

Particle Accelerators: Accelerator facility available in India: Van-de Graaff generator (Tandem accelerator), Linear accelerator, Cyclotron, Synchrotrons.

(5 Lectures)

Particle physics: Particle interactions; basic features, types of particles and its families. Symmetries and Conservation Laws: energy and momentum, angular momentum, parity, baryon number, Lepton number, Isospin, Strangeness and charm, concept of quark model, color quantum number and gluons.

(14 Lectures)

Reference Books:

- Introductory nuclear Physics by Kenneth S.Krane (Wiley India Pvt. Ltd., 2008).
- Introduction to Elementary Particles, D. Griffith, John Wiley & Sons
- Quarks and Leptons, F. Halzen and A.D.Martin, Wiley India, New Delhi
- Radiation detection and measurement, G.F. Knoll (John Wiley & Sons, 2000).

PHYSICS-DSE: Medical Physics
PHYSICS OF THE BODY-I
Mechanics of the body: Skeleton, forces, and body stability. Muscles and the dynamics of body movement Physics of body crashing; Energy household of the body: Energy balance in the body, Energy consumption of the body, Heat losses of the body, Pressure system of the body: Physics of breathing, Physics of the cardiovascular system

(10 Lectures)

PHYSICS OF THE BODY-II
Acoustics of the body: Nature and characteristics of sound, Production of speech, Physics of the ear, Diagnostics with sound and ultrasound
Optical system of the body: Physics of the eye.
Electrical system of the body: Physics of the nervous system, Electrical signals and information transfer

(10 Lectures)

PHYSICS OF DIAGNOSTIC AND THERAPEUTIC SYSTEMS-I

(7 Lectures)

(7 Lectures)

(9 Lectures)

(6 Lectures)

(6 Lectures)

PHYSICS OF DIAGNOSTIC AND THERAPEUTIC SYSTEMS-II

Diagnostic nuclear medicine: Radiopharmaceuticals for radioisotope imaging, Radioisotope imaging equipment, Single photon and positron emission tomography

Therapeutic nuclear medicine: Interaction between radiation and matter Dose and isodose in radiation treatment

(5 Lectures)

References:
- Medical Physics, J.R. Cameron and J.G.Skofronick, Wiley (1978)
- Christensen’s Physics of Diagnostic Radiology: Curry, Dowdey and Murry - Lippincot Williams and Wilkins (1990)
- The Physics of Radiology-H E Johns and Cunningham.

PRACTICALS -DSE LAB: Medical Physics

60 Lectures
1. Understanding the working of a manual Hg Blood Pressure monitor and measure the Blood Pressure.
2. Understanding the working of a manual optical eye-testing machine and to learn eye-testing.
3. Correction of Myopia (short sightedness) using a combination of lenses on an optical bench/breadboard.
4. Correction of Hypermetropia/Hyperopia (long sightedness) using a combination of lenses on an optical bench/breadboard.
5. To learn working of Thermoluminescent dosimeter (TLD) badges and measure the background radiation.
6. Familiarization with Geiger-Muller (GM) Counter and to measure background radiation.
7. Familiarization with Radiation meter and to measure background radiation.
8. Familiarization with the construction of speaker-receiver system and to design a speaker-receiver system of given specification.

References:
- Basic Radiological Physics Dr. K. Thayalan - Jayapee Brothers Medical
Christensen’s Physics of Diagnostic Radiology: Curry, Dowdey and Murry - Lippincot Williams and Wilkins (1990)

The Physics of Radiology-H E Johns and Cunningham.

Advanced Practical Physics for students, B.L.Flint & H.T.Worsnop, 1971, Asia Publishing House.

CHEMISTRY-DSE I-IV (ELECTIVES)

CHEMISTRY-DSE: APPLICATIONS OF COMPUTERS IN CHEMISTRY
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Basics:
Constants, variables, bits, bytes, binary and ASCII formats, arithmetic expressions, hierarchy of operations, inbuilt functions. Elements of the BASIC language. BASIC keywords and commands. Logical and relative operators. Strings and graphics. Compiled versus interpreted languages. Debugging. Simple programs using these concepts. Matrix addition and multiplication. Statistical analysis.

Numerical methods:

Differential calculus: Numerical differentiation.

Integral calculus: Numerical integration (Trapezoidal and Simpson’s rule), probability distributions and mean values.

Interpolation, extrapolation and curve fitting: Handling of experimental data.

Reference Books:

PRACTICAL-DSE LAB: APPLICATIONS OF COMPUTERS IN CHEMISTRY

60 Lectures

Computer programs based on numerical methods for
1. Roots of equations: (e.g. volume of van der Waals gas and comparison with ideal gas, pH of a weak acid).
2. Numerical differentiation (e.g., change in pressure for small change in volume of a van der Waals gas, potentiometric titrations).
3. Numerical integration (e.g. entropy/ enthalpy change from heat capacity data), probability distributions (gas kinetic theory) and mean values.
5. Simple exercises using molecular visualization software.

Reference Books:

CHEMISTRY-DSE: ANALYTICAL METHODS IN CHEMISTRY
(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Qualitative and quantitative aspects of analysis:

Sampling, evaluation of analytical data, errors, accuracy and precision, methods of their expression, normal law of distribution if indeterminate errors, statistical test of data; F, Q and t test, rejection of data, and confidence intervals.
Optical methods of analysis:

UV-Visible Spectrometry: Basic principles of instrumentation (choice of source, monochromator and detector) for single and double beam instrument;

Infrared Spectrometry: Basic principles of instrumentation (choice of source, monochromator & detector) for single and double beam instrument; sampling techniques. Structural illustration through interpretation of data. Effect and importance of isotope substitution.

Flame Atomic Absorption and Emission Spectrometry: Basic principles of instrumentation (choice of source, monochromator, detector, choice of flame and Burner designs. Techniques of atomization and sample introduction; Method of background correction, sources of chemical interferences and their method of removal. Techniques for the quantitative estimation of trace level of metal ions from water samples.

Thermal methods of analysis:

Theory of thermogravimetry (TG), basic principle of instrumentation.

Techniques for quantitative estimation of Ca and Mg from their mixture.

Electroanalytical methods:

Classification of electroanalytical methods, basic principle of pH metric, potentiometric and conductometric titrations. Techniques used for the determination of equivalence points. Techniques used for the determination of pK_a values.

Separation techniques:

Solvent extraction: Classification, principle and efficiency of the technique.

Mechanism of extraction: extraction by solvation and chelation.

Technique of extraction: batch, continuous and counter current extractions.

Qualitative and quantitative aspects of solvent extraction: extraction of metal ions from aqueous solution, extraction of organic species from the aqueous and nonaqueous media.
Chromatography: Classification, principle and efficiency of the technique.

Mechanism of separation: adsorption, partition & ion exchange.

Development of chromatograms: frontal, elution and displacement methods.

Qualitative and quantitative aspects of chromatographic methods of analysis: IC, GLC, GPC, TLC and HPLC.

Stereoisomeric separation and analysis: Measurement of optical rotation, calculation of Enantiomeric excess (ee)/ diastereomeric excess (de) ratios and determination of enantiomeric composition using NMR, Chiral solvents and chiral shift reagents. Chiral chromatographic techniques using chiral columns (GC and HPLC).

Role of computers in instrumental methods of analysis.

(15 Lectures)

Reference Books:
- Ditts, R.V. Analytical Chemistry – Methods of separation.

PRACTICALS- DSE LAB: ANALYTICAL METHODS IN CHEMISTRY
60 Lectures
I. Separation Techniques

1. Chromatography:

(a) Separation of mixtures

(i) Paper chromatographic separation of Fe$^{3+}$, Al$^{3+}$, and Cr$^{3+}$.

(ii) Separation and identification of the monosaccharides present in the given mixture
(glucose & fructose) by paper chromatography. Reporting the R_f values.

(b) Separate a mixture of Sudan yellow and Sudan Red by TLC technique and identify them on the basis of their R_f values.

(c) Chromatographic separation of the active ingredients of plants, flowers and juices by TLC

II. Solvent Extractions:

(i) To separate a mixture of Ni^{2+} & Fe^{2+} by complexation with DMG and extracting the Ni^{2+} - DMG complex in chloroform, and determine its concentration by spectrophotometry.

(ii) Solvent extraction of zirconium with amberliti LA-1, separation from a mixture of irons and gallium.

3. Determine the pH of the given aerated drinks fruit juices, shampoos and soaps.

4. Determination of Na, Ca, Li in cola drinks and fruit juices using flame photometric techniques.

5. Analysis of soil:

(i) Determination of pH of soil.

(ii) Total soluble salt

(iii) Estimation of calcium, magnesium, phosphate, nitrate

6. Ion exchange:

(i) Determination of exchange capacity of cation exchange resins and anion exchange resins.

(ii) Separation of metal ions from their binary mixture.

(iii) Separation of amino acids from organic acids by ion exchange chromatography.

III Spectrophotometry

1. Determination of pK_a values of indicator using spectrophotometry.

2. Structural characterization of compounds by infrared spectroscopy.

3. Determination of dissolved oxygen in water.

4. Determination of chemical oxygen demand (COD).

5. Determination of Biological oxygen demand (BOD).

6. Determine the composition of the Ferric-salicylate/ ferric-thiocyanate complex by Job’s method.

Reference Books:

Ditts, R.V. Analytical Chemistry – Methods of separation.

--

CHEMISTRY-DSE: MOLECULAR MODELLING & DRUG DESIGN
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Introduction to Molecular Modelling:

(10 Lectures)

Force Fields:

(14 Lectures)

Energy Minimization and Computer Simulation:

(12 Lectures)

Molecular Dynamics & Monte Carlo Simulation:

(12 Lectures)

Structure Prediction and Drug Design:

Structure prediction - Introduction to comparative Modeling. Sequence alignment. Constructing and evaluating a comparative model. Predicting protein structures by 'Threading’, Molecular docking. Structure based de novo ligand design,

Drug Discovery – Chemoinformatics – QSAR.

(12 Lectures)

Reference Books:

PRACTICAL- DSE LAB: MOLECULAR MODELLING & DRUG DESIGN

60 Lectures

i. Compare the optimized C-C bond lengths in ethane, ethene, ethyne and benzene. Visualize the molecular orbitals of the ethane σ bonds and ethene, ethyne, benzene and pyridine π bonds.

ii. (a) Perform a conformational analysis of butane. (b) Determine the enthalpy of isomerization of cis and trans 2-butene.

iii. Visualize the electron density and electrostatic potential maps for LiH, HF, N₂, NO and CO and comment. Relate to the dipole moments. Animate the vibrations of these molecules.

iv. (a) Relate the charge on the hydrogen atom in hydrogen halides with their acid character. (b) Compare the basicities of the nitrogen atoms in ammonia, methylamine, dimethylamine and trimethylamine.

v. (a) Compare the shapes of the molecules: 1-butanol, 2-butanol, 2-methyl-1-propanol, and 2-methyl-2-propanol. Note the dipole moment of each molecule. (b) Show how the shapes affect the trend in boiling points: (118 °C, 100 °C, 108 °C, 82 °C, respectively).

vi. Build and minimize organic compounds of your choice containing the following functional groups. Note the dipole moment of each compound: (a) alkyl halide (b) aldehyde (c) ketone (d) amine (e) ether (f) nitrile (g) thiol (h) carboxylic acid (i) ester (j) amide.

vii. (a) Determine the heat of hydration of ethylene. (b) Compute the resonance energy of benzene by comparison of its enthalpy of hydrogenation with that of cyclohexene.
viii. Arrange 1-hexene, 2-methyl-2-pentene, \((E)\)-3-methyl-2-pentene, \((Z)\)-3-methyl-2-pentene, and 2,3-dimethyl-2-butene in order of increasing stability.

ix. (a) Compare the optimized bond angles \(\text{H}_2\text{O}, \text{H}_2\text{S}, \text{H}_2\text{Se}\). (b) Compare the \(\text{HAH}\) bond angles for the second row dihydrides and compare with the results from qualitative MO theory.

Note: Software: ChemSketch, ArgusLab (www.planaria-software.com), TINKER 6.2 (dasher.wustl.edu/ffe), WebLab Viewer, Hyperchem, or any similar software.

Reference Books:

CHEMISTRY-DSE: NOVEL INORGANIC SOLIDS
(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Synthesis and modification of inorganic solids:

(10 Lectures)

Inorganic solids of technological importance:

Solid electrolytes – Cationic, anionic, mixed Inorganic pigments – coloured solids, white and black pigments.

Molecular material and fullerides, molecular materials & chemistry – one-dimensional metals, molecular magnets, inorganic liquid crystals.

(10 Lectures)

Nanomaterials:

Overview of nanostructures and nanomaterials: classification.

(10 Lectures)
Introduction to engineering materials for mechanical construction:

Composition, mechanical and fabricating characteristics and applications of various types of cast irons, plain carbon and alloy steels, copper, aluminum and their alloys like duralumin, brasses and bronzes cutting tool materials, super alloys thermoplastics, thermosets and composite materials.

(10 Lectures)

Composite materials:

Introduction, limitations of conventional engineering materials, role of matrix in composites, classification, matrix materials, reinforcements, metal-matrix composites, polymer-matrix composites, fibre-reinforced composites, environmental effects on composites, applications of composites.

(10 Lectures)

Speciality polymers:

(10 Lectures)

Reference Books:

- Frank J. Ovens, Introduction to Nanotechnology

CHEMISTRY PRACTICAL - DSE LAB: NOVEL INORGANIC SOLIDS

60 Lectures

1. Determination of cation exchange method
2. Determination of total difference of solids.
3. Synthesis of hydrogel by co-precipitation method.

Reference Book:

CHEMISTRY-DSE: POLYMER CHEMISTRY
(Credits: Theory-06, Practicals-02)
Theory: 60 Lectures

Introduction and history of polymeric materials:
Different schemes of classification of polymers, Polymer nomenclature, Molecular forces and chemical bonding in polymers, Texture of Polymers.

(4 Lectures)

Functionality and its importance:

(8 Lectures)

Kinetics of Polymerization:
Mechanism and kinetics of step growth, radical chain growth, ionic chain (both cationic and anionic) and coordination polymerizations, Mechanism and kinetics of copolymerization, polymerization techniques.

(8 lectures)

Crystallization and crystallinity:
Determination of crystalline melting point and degree of crystallinity, Morphology of crystalline polymers, Factors affecting crystalline melting point.

(4 Lectures)

Nature and structure of polymers-Structure Property relationships.

(2 Lectures)

Determination of molecular weight of polymers (M_n, M_w, etc) by end group analysis, viscometry, light scattering and osmotic pressure methods. Molecular weight distribution and its significance.

Polydispersity index.

(8 Lectures)
Glass transition temperature (Tg) and determination of Tg. Free volume theory, WLF equation, Factors affecting glass transition temperature (Tg).

(8 Lectures)

Polymer Solution – Criteria for polymer solubility, Solubility parameter, Thermodynamics of polymer solutions, entropy, enthalpy, and free energy change of mixing of polymers solutions, Flory- Huggins theory, Lower and Upper critical solution temperatures.

(8 Lectures)

Properties of Polymers (Physical, thermal, Flow & Mechanical Properties).

Brief introduction to preparation, structure, properties and application of the following polymers: polyolefins, polystyrene and styrene copolymers, poly(vinyl chloride) and related polymers, poly(vinyl acetate) and related polymers, acrylic polymers, fluoro polymers, polyamides and related polymers. Phenol formaldehyde resins (Bakelite, Novalac), polyurethanes, silicone polymers, polydienes, Polycarbonates, Conducting Polymers, [polyacetylene, polyaniline, poly(p-phenylene sulphide polypyrrole, polythiophene)].

(10 Lectures)

Reference Books:
• Seymour’s Polymer Chemistry, Marcel Dekker, Inc.
• G. Odian: Principles of Polymerization, John Wiley.
• F.W. Billmeyer: Text Book of Polymer Science, John Wiley.
• P. Ghosh: Polymer Science & Technology, Tata Mcgraw-Hill.
• R.W. Lenz: Organic Chemistry of Synthetic High Polymers.

CHEMISTRY PRACTICAL - DSE LAB: POLYMER CHEMISTRY

60 Lectures
1. Polymer synthesis

1. Free radical solution polymerization of styrene (St) / Methyl Methacrylate (MMA) / Methyl Acrylate (MA) / Acrylic acid (AA).
 a. Purification of monomer
 b. Polymerization using benzoyl peroxide (BPO) / 2,2’-azo-bis-isobutyl nitrite (AIBN)
2. Preparation of nylon 66/6
1. Interfacial polymerization, preparation of polyester from isophthaloyl chloride (IPC) and phenolphthalein

 a. Preparation of IPC
 b. Purification of IPC
 c. Interfacial polymerization

3. Redox polymerization of acrylamide
4. Precipitation polymerization of acrylonitrile
5. Preparation of urea-formaldehyde resin
6. Preparations of novalac resin/resold resin.
7. Microscale Emulsion Polymerization of Poly(methylacrylate).

Polymer characterization

1. Determination of molecular weight by viscometry:
 (a) Polyacrylamide-aq.NaNO₂ solution
 (b) (Poly vinyl propyldine (PVP) in water
2. Determination of the viscosity-average molecular weight of poly(vinyl alcohol) (PVOH) and the fraction of “head-to-head” monomer linkages in the polymer.
3. Determination of molecular weight by end group analysis: Polyethylene glycol (PEG) (OH group).
5. Determination of hydroxyl number of a polymer using colorimetric method.

Polymer analysis

1. Estimation of the amount of HCHO in the given solution by sodium sulphite method
2. Instrumental Techniques
3. IR studies of polymers
4. DSC analysis of polymers
5. Preparation of polyacrylamide and its electrophoresis

*at least 7 experiments to be carried out.

Reference Books:

- Malcolm P. Stevens, Polymer Chemistry: An Introduction, 3rd Ed.
CHEMISTRY-DSE: RESEARCH METHODOLOGY FOR CHEMISTRY
(Credits: Theory-05, Tutorials-01)
Theory: 75 Lectures

Literature Survey:

Print: Sources of information: Primary, secondary, tertiary sources; Journals: Journal abbreviations, abstracts, current titles, reviews, monographs, dictionaries, text-books, current contents, Introduction to Chemical Abstracts and Beilstein, Subject Index, Substance Index, Author Index, Formula Index, and other Indices with examples.

(20 Lectures)

Methods of Scientific Research and Writing Scientific Papers:

Reporting practical and project work. Writing literature surveys and reviews. Organizing a poster display. Giving an oral presentation.

Writing scientific papers – justification for scientific contributions, bibliography, description of methods, conclusions, the need for illustration, style, publications of scientific work. Writing ethics. Avoiding plagiarism.

(20 Lectures)

Chemical Safety and Ethical Handling of Chemicals:

Safe working procedure and protective environment, protective apparel, emergency procedure and first aid, laboratory ventilation. Safe storage and use of hazardous chemicals, procedure for working with substances that pose hazards, flammable or explosive hazards, procedures for working with gases at pressures above or below atmospheric – safe storage and disposal of waste chemicals, recovery, recycling and reuse of laboratory chemicals, procedure for laboratory disposal of explosives, identification, verification and segregation of laboratory waste, disposal of chemicals in the sanitary sewer system, incineration and transportation of hazardous chemicals.

(12 Lectures)
Data Analysis

The Investigative Approach: Making and Recording Measurements. SI Units and their use. Scientific method and design of experiments.

(13 Lectures)

Electronics

Basic fundamentals of electronic circuits and their components used in circuits of common instruments like spectrophotometers, typical circuits involving operational amplifiers for electrochemical instruments. Elementary aspects of digital electronics.

(10 Lectures)

Reference Books

- OSU safety manual 1.01.

CHEMISTRY-DSE: GREEN CHEMISTRY
(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Introduction to Green Chemistry

(4 Lectures)

Principles of Green Chemistry and Designing a Chemical synthesis
Twelve principles of Green Chemistry with their explanations and examples; Designing a Green Synthesis using these principles; Prevention of Waste/ byproducts; maximum incorporation of the materials used in the process into the final products (Atom Economy); prevention/ minimization of hazardous/ toxic products; designing safer
chemicals – different basic approaches to do so; selection of appropriate auxiliary substances (solvents, separation agents), green solvents, solventless processes, immobilized solvents and ionic liquids; energy requirements for reactions - use of microwaves, ultrasonic energy; selection of starting materials; avoidance of unnecessary derivatization – careful use of blocking/protecting groups; use of catalytic reagents (wherever possible) in preference to stoichiometric reagents; designing of biodegradable products; prevention of chemical accidents; strengthening/ development of analytical techniques to prevent and minimize the generation of hazardous substances in chemical processes.

(24 Lectures)

Examples of Green Synthesis/ Reactions

1. Green Synthesis of the following compounds: adipic acid, catechol, BHT, methyl methacrylate, urethane, aromatic amines (4-aminodiphenylamine), benzyl bromide, acetaldehyde, disodium iminodiacetate (alternative to Strecker synthesis), citral, ibuprofen, paracetamol, furfural.
2. Microwave assisted reactions in water: Hofmann Elimination, Hydrolysis (of benzyl chloride, benzamide, n-phenyl benzamide, methylbenzoate to benzole acid), Oxidation (of toluene, alcohols).
 Microwave assisted reactions in organic solvents: Esterification, Fries rearrangement, Orthoester Claisen Rearrangement, Diels-Alder Reaction, Decarboxylation.
 Microwave assisted solid state reactions: Deacetylation, Deprotection. Saponification of esters, Alkylation of reactive methylene compounds, reductions, synthesis of nitriles from aldehydes; anhydrides from dicarboxylic acid; pyrimidine and pyridine derivatives; 1,2-dihydrotriazine derivatives; benzimidazoles.
3. Ultrasound assisted reactions: Esterification, saponification, substitution reactions, Alkylations, oxidation, reduction, coupling reaction, Cannizaro reaction, Strecker synthesis, Reformatsky reaction.
4. Selective methylation of active methylene group using dimethylcarbonate: Solid-state polymerization of amorphous polymers using diphenylcarbonate; Use of “Clayan”, a nonmetallic oxidative reagent for various reactions; Free Radical Bromination; Role of Tellurium in organic syntheses; Biocatalysis in organic syntheses.

(24 Lectures)

Future Trends in Green Chemistry

Oxidation reagents and catalysts; Biomimetic, multifunctional reagents; Combinatorial green chemistry; Proliferation of solventless reactions; oncovalent derivatization; Green chemistry in sustainable development.

(8 Lectures)

Reference Books:

CHEMISTRY PRACTICAL - DSE LAB: GREEN CHEMISTRY

60 Lectures
1. Safer starting materials

The Vitamin C clock reaction using Vitamin C tablets, tincture of iodine, hydrogen peroxide and liquid laundry starch.

- Effect of concentration on clock reaction
- Effect of temperature on clock reaction. (if possible)

2. Using renewable resources

Preparation of biodiesel from vegetable oil.

3. Avoiding waste

Principle of atom economy.

Use of molecular model kit to stimulate the reaction to investigate how the atom economy can illustrate Green Chemistry.

Preparation of propene by two methods can be studied

(I) Triethylamine ion + OH → propene + trimethylpropene + water

(II) 1-propanol $\xrightarrow{\text{H}_2\text{SO}_4/\Delta}$ propene + water

The other types of reactions, like addition, elimination, substitution and rearrangement should also be studied for the calculation of atom economy.

4. Use of enzymes as catalysts

Benzoin condensation using Thiamine Hydrochloride as a catalyst instead of cyanide

Alternative Green solvents

5. Diels Alder reaction in water

Reaction between furan and maleic acid in water and at room temperature rather than in benzene and reflux.

7. Mechanochemical solvent free synthesis of azomethines

8. Co-crystal controlled solid state synthesis (C$_2$S$_3$) of N-organophthalimide using phthalic anhydride and 3-aminobenzoic acid.
Alternative sources of energy

9. Solvent free, microwave assisted one pot synthesis of phthalocyanine complex of copper (II).

10. Photoreduction of benzophenone to benzopinacol in the presence of sunlight.

Reference Books:
- Pavia, D. L. Lamponan, G. H. &Kriz, G.S. *W B Introduction to organic laboratory*

CHEMISTRY-DSE: INDUSTRIAL CHEMICALS AND ENVIRONMENT
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Industrial Gases and Inorganic Chemicals

Industrial Gases: Large scale production, uses, storage and hazards in handling of the following gases: oxygen, nitrogen, argon, neon, helium, hydrogen, acetylene, carbon monoxide, chlorine, fluorine, sulphur dioxide and phosgene.

Inorganic Chemicals: Manufacture, application, analysis and hazards in handling the following chemicals: hydrochloric acid, nitric acid, sulphuric acid, caustic soda, common salt, borax, bleaching powder, sodium thiosulphate, hydrogen peroxide, potash alum, chrome alum, potassium dichromate and potassium permanganate.

(10 Lectures)

Industrial Metallurgy

Preparation of metals (ferrous and nonferrous) and ultrapure metals for semiconductor technology.
Environment and its segments

Pollution by SO\textsubscript{2}, CO\textsubscript{2}, CO, NO\textsubscript{x}, H\textsubscript{2}S and other foul smelling gases. Methods of estimation of CO, NO\textsubscript{x}, SO\textsubscript{x} and control procedures.

Effects of air pollution on living organisms and vegetation. Greenhouse effect and Global warming, Ozone depletion by oxides of nitrogen, chlorofluorocarbons and Halogens, removal of sulphur from coal. Control of particulates.

Water Pollution: Hydrological cycle, water resources, aquatic ecosystems, Sources and nature of water pollutants, Techniques for measuring water pollution, Impacts of water pollution on hydrological and ecosystems.

Water purification methods. Effluent treatment plants (primary, secondary and tertiary treatment). Industrial effluents from the following industries and their treatment: electroplating, textile, tannery, dairy, petroleum and petrochemicals, agro, fertilizer, etc. Sludge disposal.

Industrial waste management, incineration of waste. Water treatment and purification (reverse osmosis, electro dialysis, ion exchange). Water quality parameters for waste water, industrial water and domestic water.

Energy & Environment

Sources of energy: Coal, petrol and natural gas. Nuclear Fusion / Fission, Solar energy, Hydrogen, geothermal, Tidal and Hydel, etc.

Nuclear Pollution: Disposal of nuclear waste, nuclear disaster and its management.

Biocatalysis

Introduction to biocatalysis: Importance in “Green Chemistry” and Chemical Industry.

Reference Books:

CHEMISTRY PRACTICAL - DSE LAB: INDUSTRIAL CHEMICALS & ENVIRONMENT

60 Lectures
1. Determination of dissolved oxygen in water.
2. Determination of Chemical Oxygen Demand (COD)
3. Determination of Biological Oxygen Demand (BOD)
4. Percentage of available chlorine in bleaching powder.
5. Measurement of chloride, sulphate and salinity of water samples by simple titration method (AgNO$_3$ and potassium chromate).
6. Estimation of total alkalinity of water samples (CO$_3^{2-}$, HCO$_3^-$) using double titration method.
8. Study of some of the common bio-indicators of pollution.
10. Preparation of borax/ boric acid.

Reference Books:

CHEMISTRY-DSE: INORGANIC MATERIALS OF INDUSTRIAL IMPORTANCE
(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures
Silicate Industries

Glass: Glassy state and its properties, classification (silicate and non-silicate glasses). Manufacture and processing of glass. Composition and properties of the following types of glasses: Soda lime glass, lead glass, armoured glass, safety glass, borosilicate glass, fluorosilicate, coloured glass, photosensitive glass.

Ceramics: Important clays and feldspar, ceramic, their types and manufacture. High technology ceramics and their applications, superconducting and semiconducting oxides, fullerenes carbon nanotubes and carbon fibre.

Cements: Classification of cement, ingredients and their role, Manufacture of cement and the setting process, quick setting cements.

(16 Lectures)

Fertilizers:

Different types of fertilizers. Manufacture of the following fertilizers: Urea, ammonium nitrate, calcium ammonium nitrate, ammonium phosphates; polyphosphate, superphosphate, compound and mixed fertilizers, potassium chloride, potassium sulphate.

(8 Lectures)

Surface Coatings:

(10 Lectures)

Batteries:

Primary and secondary batteries, battery components and their role, Characteristics of Battery. Working of following batteries: Pb acid, Li-Battery, Solid state electrolyte battery. Fuel cells, Solar cell and polymer cell.

(6 Lectures)

Alloys:

Classification of alloys, ferrous and non-ferrous alloys, Specific properties of elements in alloys. Manufacture of Steel (removal of silicon decarbonization, demanganization, desulphurization dephosphorisation) and surface treatment (argon treatment, heat treatment, nitriding, carburizing). Composition and properties of different types of steels.

(10 Lectures)
Catalysis:

General principles and properties of catalysts, homogenous catalysis (catalytic steps and examples) and heterogenous catalysis (catalytic steps and examples) and their industrial applications, Deactivation or regeneration of catalysts.

Phase transfer catalysts, application of zeolites as catalysts.

(6 Lectures)

Chemical explosives:

Origin of explosive properties in organic compounds, preparation and explosive properties of lead azide, PETN, cyclonite (RDX). Introduction to rocket propellants.

(4 Lectures)

Reference Books:

• B. K. Sharma: *Engineering Chemistry*, Goel Publishing House, Meerut

PRACTICALS-DSE LAB: INORGANIC MATERIALS OF INDUSTRIAL IMPORTANCE

60 Lectures

1. Determination of free acidity in ammonium sulphate fertilizer.
2. Estimation of Calcium in Calcium ammonium nitrate fertilizer.
3. Estimation of phosphoric acid in superphosphate fertilizer.
4. Electroless metallic coatings on ceramic and plastic material.
5. Determination of composition of dolomite (by complexometric titration).
6. Analysis of (Cu, Ni); (Cu, Zn) in alloy or synthetic samples.
8. Preparation of pigment (zinc oxide).

Reference Books:

• B. K. Sharma: *Engineering Chemistry*, Goel Publishing House, Meerut

--

CHEMISTRY-DSE: INSTRUMENTAL METHODS OF CHEMICAL ANALYSIS
(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Introduction to spectroscopic methods of analysis:

Recap of the spectroscopic methods covered in detail in the core chemistry syllabus: Treatment of analytical data, including error analysis. Classification of analytical methods and the types of instrumental methods. Consideration of electromagnetic radiation.

(4 Lectures)

Molecular spectroscopy:

Infrared spectroscopy:

Interactions with molecules: absorption and scattering. Means of excitation (light sources), separation of spectrum (wavelength dispersion, time resolution), detection of the signal (heat, differential detection), interpretation of spectrum (qualitative, mixtures, resolution), advantages of Fourier Transform (FTIR). Samples and results expected. Applications: Issues of quality assurance and quality control, Special problems for portable instrumentation and rapid detection.

UV-Visible/ Near IR – emission, absorption, fluorescence and photoacoustic. Excitation sources (lasers, time resolution), wavelength dispersion (gratings, prisms, interference filters, laser, placement of sample relative to dispersion, resolution), Detection of signal (photocells, photomultipliers, diode arrays, sensitivity and S/N), Single and Double Beam instruments, Interpretation (quantification, mixtures, absorption vs. fluorescence and the use of time, photoacoustic, fluorescent tags).

(16 Lectures)

Separation techniques

Chromatography: Gas chromatography, liquid chromatography, supercritical fluids, Importance of column technology (packing, capillaries), Separation based on increasing number of factors (volatility, solubility, interactions with stationary phase, size, electrical field), Detection: simple vs. specific (gas and liquid), Detection as a means of further
analysis (use of tags and coupling to IR and MS), Electrophoresis (plates and capillary) and use with DNA analysis.

Immunoassays and DNA techniques

Mass spectroscopy: Making the gaseous molecule into an ion (electron impact, chemical ionization), Making liquids and solids into ions (electrospray, electrical discharge, laser desorption, fast atom bombardment), Separation of ions on basis of mass to charge ratio, Magnetic, Time of flight, Electric quadrupole. Resolution, time and multiple separations, Detection and interpretation (how this is linked to excitation).

(16 Lectures)

Elemental analysis:

Mass spectrometry (electrical discharges).

Excitation and getting sample into gas phase (flames, electrical discharges, plasmas), Wavelength separation and resolution (dependence on technique), Detection of radiation (simultaneous/scanning, signal noise), Interpretation (errors due to molecular and ionic species, matrix effects, other interferences).

(8 Lectures)

NMR spectroscopy: Principle, Instrumentation, Factors affecting chemical shift, Spin-coupling, Applications.

(4 Lectures)

Electroanalytical Methods: Potentiometry & Voltammetry

(4 Lectures)

Radiochemical Methods

(4 Lectures)

X-ray analysis and electron spectroscopy (surface analysis)

(4 Lectures)

Reference books:

- Instrumental Methods of Analysis, 7th ed, Willard, Merritt, Dean, Settle.
- P.W. Atkins: Physical Chemistry.
- G.W. Castellan: Physical Chemistry.
- C.N. Banwell: Fundamentals of Molecular Spectroscopy.
- W.J. Moore: Physical Chemistry.
PRACTICALS-DSE LAB: INSTRUMENTAL METHODS OF CHEMICAL ANALYSIS

60 Lectures

1. Safety Practices in the Chemistry Laboratory
2. Determination of the isoelectric pH of a protein.
3. Titration curve of an amino acid.
4. Determination of the void volume of a gel filtration column.
5. Determination of a Mixture of Cobalt and Nickel (UV/Vis spec.)
6. Study of Electronic Transitions in Organic Molecules (i.e., acetone in water)
7. IR Absorption Spectra (Study of Aldehydes and Ketones)
8. Determination of Calcium, Iron, and Copper in Food by Atomic Absorption
9. Quantitative Analysis of Mixtures by Gas Chromatography (i.e., chloroform and carbon tetrachloride)
10. Separation of Carbohydrates by HPLC
11. Determination of Caffeine in Beverages by HPLC
12. Potentiometric Titration of a Chloride-Iodide Mixture
13. Cyclic Voltammetry of the Ferrocyanide/Ferricyanide Couple
14. Nuclear Magnetic Resonance
15. Use of fluorescence to do “presumptive tests” to identify blood or other body fluids.
16. Use of “presumptive tests” for anthrax or cocaine
17. Collection, preservation, and control of blood evidence being used for DNA testing
18. Use of capillary electrophoresis with laser fluorescence detection for nuclear DNA (Y chromosome only or multiple chromosome)
19. Use of sequencing for the analysis of mitochondrial DNA
20. Laboratory analysis to confirm anthrax or cocaine
21. Detection in the field and confirmation in the laboratory of flammable accelerants or explosives
22. Detection of illegal drugs or steroids in athletes
23. Detection of pollutants or illegal dumping
24. Fibre analysis

At least 10 experiments to be performed.

Reference Books:
- Instrumental Methods of Analysis, 7th ed, Willard, Merritt, Dean, Settle.

DSE: CHEMISTRY OF D-BLOCK ELEMENTS, QUANTUM CHEMISTRY & SPECTROSCOPY

(Credits: Theory-04, Practicals-02)
Theory: 60 Lectures

Section A: Inorganic Chemistry-3 (30 Lectures)
Transition Elements (3d series)

General group trends with special reference to electronic configuration, variable valency, colour, magnetic and catalytic properties, ability to form complexes and stability of various oxidation states (Latimer diagrams) for Mn, Fe and Cu.

Lanthanoids and actinoids: Electronic configurations, oxidation states, colour, magnetic properties, lanthanide contraction, separation of lanthanides (ion exchange method only).

(12 Lectures)

Coordination Chemistry

Drawbacks of VBT. IUPAC system of nomenclature.

(8 Lectures)

Crystal Field Theory

Crystal field effect, octahedral symmetry. Crystal field stabilization energy (CFSE), Crystal field effects for weak and strong fields. Tetrahedral symmetry. Factors affecting the magnitude of D. Spectrochemical series. Comparison of CFSE for O_h and T_d complexes, Tetragonal distortion of octahedral geometry.

Jahn-Teller distortion, Square planar coordination.

(10 Lectures)

Section B: Physical Chemistry-4 (30 Lectures)

Quantum Chemistry & Spectroscopy

Postulates of quantum mechanics, quantum mechanical operators.

Free particle. Particle in a 1-D box (complete solution), quantization, normalization of wavefunctions, concept of zero-point energy.

Rotational Motion: Schrödinger equation of a rigid rotator and brief discussion of its results (solution not required). Quantization of rotational energy levels.
Microwave (pure rotational) spectra of diatomic molecules. Selection rules. Structural information derived from rotational spectroscopy.

Vibrational Motion: Schrödinger equation of a linear harmonic oscillator and brief discussion of its results (solution not required). Quantization of vibrational energy levels. Selection rules, IR spectra of diatomic molecules. Structural information derived from vibrational spectra. Vibrations of polyatomic molecules. Group frequencies. Effect of hydrogen bonding (inter- and intramolecular) and substitution on vibrational frequencies.

(24 Lectures)

Photochemistry

(6 Lectures)

Reference Books:
- J. D. Lee: *A New Concise Inorganic Chemistry*, E.L.B.S.

DSE LAB

60 Lectures

Section A: Inorganic Chemistry

1. Estimation of the amount of nickel present in a given solution as bis(dimethylglyoximato) nickel(II) or aluminium as oxinate in a given solution gravimetrically.
2. Estimation of (i) Mg$^{2+}$ or (ii) Zn$^{2+}$ by complexometric titrations using EDTA.
3. Estimation of total hardness of a given sample of water by complexometric titration.
4. To draw calibration curve (absorbance at λ_{max} vs. concentration) for various concentrations of a given coloured compound and estimate the concentration of the same in a given solution.
5. Determination of the composition of the Fe$^{3+}$ - salicylic acid complex / Fe$^{2+}$ - phenanthroline complex in solution by Job’s method.

Section B: Physical Chemistry

UV/Visible spectroscopy

I. Study the 200-500 nm absorbance spectra of KMnO$_4$ and K$_2$Cr$_2$O$_7$ (in 0.1 M H$_2$SO$_4$) and determine the λ_{max} values. Calculate the energies of the two transitions in different units (J molecule$^{-1}$, kJ mol$^{-1}$, cm$^{-1}$, eV).
II. Study the pH-dependence of the UV-Vis spectrum (200-500 nm) of K$_2$Cr$_2$O$_7$.
III. Record the 200-350 nm UV spectra of the given compounds (acetone, acetaldehyde, 2-propanol, acetic acid) in water. Comment on the effect of structure on the UV spectra of organic compounds.

Colourimetry

I. Verify Lambert-Beer’s law and determine the concentration of CuSO$_4$/KMnO$_4$/K$_2$Cr$_2$O$_7$ in a solution of unknown concentration
II. Analyse the given vibration-rotation spectrum of HCl(g)

Reference Books:
- A.I. Vogel, Qualitative Inorganic Analysis, Prentice Hall, 7th Edn.
- B.D. Khosla, Senior Practical Physical Chemistry, R. Chand & Co.
Organometallic Compounds

Definition and Classification with appropriate examples based on nature of metal-carbon bond (ionic, s, p and multicentre bonds). Structures of methyl lithium, Zeiss salt and ferrocene. EAN rule as applied to carboxyls. Preparation, structure, bonding and properties of mononuclear and polynuclear carbonyls of 3d metals. \(p \)-acceptor behaviour of carbon monoxide. Synergic effects (VB approach)- (MO diagram of CO can be referred to for synergic effect to IR frequencies).

Bio-Inorganic Chemistry

A brief introduction to bio-inorganic chemistry. Role of metal ions present in biological systems with special reference to \(\text{Na}^+ \), \(\text{K}^+ \) and \(\text{Mg}^{2+} \) ions: \(\text{Na/K} \) pump; Role of \(\text{Mg}^{2+} \) ions in energy production and chlorophyll. Role of \(\text{Ca}^{2+} \) in blood clotting, stabilization of protein structures and structural role (bones).

Section B: Organic Chemistry-4 (30 Lectures)

Polynuclear and heteronuclear aromatic compounds:

Properties of the following compounds with reference to electrophilic and nucleophilic substitution: Naphthalene, Anthracene, Furan, Pyrrole, Thiophene, and Pyridine.

Active methylene compounds:

Preparation: Claisen ester condensation. Keto-enol tautomerism.

Reactions: Synthetic uses of ethylacetoacetate (preparation of non-heteromolecules having upto 6 carbon).

Application of Spectroscopy to Simple Organic Molecules

Application of visible, ultraviolet and Infrared spectroscopy in organic molecules. Electromagnetic radiations, electronic transitions, \(\lambda_{\text{max}} \) & \(\varepsilon_{\text{max}} \), chromophore, auxochrome, bathochromic and hypsochromic shifts. Application of electronic spectroscopy and Woodward rules for calculating \(\lambda_{\text{max}} \) of conjugated dienes and \(\alpha,\beta \) – unsaturated compounds.

Infrared radiation and types of molecular vibrations, functional group and fingerprint region. IR spectra of alkanes, alkenes and simple alcohols (inter and intramolecular
hydrogen bonding), aldehydes, ketones, carboxylic acids and their derivatives (effect of substitution on >C=O stretching absorptions).

(18 Lectures)

Reference Books:

- J.D. Lee: *A New Concise Inorganic Chemistry*, E.L.B.S.

DSE LAB

60 Lectures

Section A: Inorganic Chemistry

1. Separation of mixtures by chromatography: Measure the R_f value in each case. (Combination of two ions to be given)

Paper chromatographic separation of Fe$^{3+}$, Al$^{3+}$ and Cr$^{3+}$ or

Paper chromatographic separation of Ni$^{2+}$, Co$^{2+}$, Mn$^{2+}$ and Zn$^{2+}$

2. Preparation of any two of the following complexes and measurement of their conductivity:

(i) tetraamminecarbonatocobalt (III) nitrate

(ii) tetraamminecopper (II) sulphate

(iii) potassium trioxalatoferrate (III) trihydrate

Compare the conductance of the complexes with that of M/1000 solution of NaCl, MgCl$_2$ and LiCl$_3$.

Section B: Organic Chemistry

Systematic Qualitative Organic Analysis of Organic Compounds possessing monofunctional groups (-COOH, phenolic, aldehydic, ketonic, amide, nitro, amines) and preparation of one derivative.
Reference Books:

DSE: MOLECULES OF LIFE

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Unit 1: Carbohydrates (10 Periods)
Classification of carbohydrates, reducing and non reducing sugars, General Properties of Glucose and Fructose, their open chain structure. Epimers, mutarotation and anomers. Determination of configuration of Glucose (Fischer proof).
Cyclic structure of glucose. Haworth projections. Cyclic structure of fructose.
Linkage between monosachharides, structure of disacharrides (sucrose, maltose, lactose) and polysacharrides (starch and cellulose) excluding their structure elucidation.

Unit 2: Amino Acids, Peptides and Proteins (12 Periods)
Classification of Amino Acids, Zwitterion structure and Isoelectric point.
Overview of Primary, Secondary, Tertiary and Quaternary structure of proteins.
Determination of primary structure of peptides, determination of N-terminal amino acid (by DNFB and Edman method) and C–terminal amino acid (by thiohydantoin and with carboxypeptidase enzyme). Synthesis of simple peptides (upto dipeptides) by N-protection (t-butyloxycarbonyl and phthaloyl) & C–activating groups and Merrifield solid phase synthesis.

Unit 3: Enzymes and correlation with drug action (12 Periods)
Mechanism of enzyme action, factors affecting enzyme action, Coenzymes and cofactors and their role in biological reactions, Specificity of enzyme action(Including stereospecifity) , Enzyme inhibitors and their importance, phenomenon of inhibition(Competitive and Non competitive inhibition including allosteric inhibition). Drug action-receptor theory. Structure –activity relationships of drug molecules, binding role of –OH group, -NH₂ group, double bond and aromatic ring.

Unit 4: Nucleic Acids (10 Periods)
Components of Nucleic acids: Adenine, guanine, thymine and Cytosine (Structure only), other components of nucleic acids, Nucleosides and nucleotides (nomenclature), Structure of polynucleotides; Structure of DNA (Watson-Crick model) and RNA(types of RNA), Genetic Code, Biological roles of DNA and RNA: Replication, Transcription and Translation.
Unit 5: Lipids (8 Periods)
Introduction to lipids, classification.
Oils and fats: Common fatty acids present in oils and fats, Omega fatty acids, Trans fats, Hydrogenation, Saponification value, Iodine number.
Biological importance of triglycerides, phospholipids, glycolipids, and steroids (cholesterol).

Unit 6: Concept of Energy in Biosystems (8 Periods)
Calorific value of food. Standard caloric content of carbohydrates, proteins and fats.
Oxidation of foodstuff (organic molecules) as a source of energy for cells. Introduction to Metabolism (catabolism, anabolism), ATP: the universal currency of cellular energy, ATP hydrolysis and free energy change.

Recommended Texts:
- Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

DSE LAB
60 Lectures
1. Separation of amino acids by paper chromatography
2. To determine the concentration of glycine solution by formylation method.
3. Study of titration curve of glycine
4. Action of salivary amylase on starch
5. Effect of temperature on the action of salivary amylase on starch.
6. To determine the saponification value of an oil/fat.
7. To determine the iodine value of an oil/fat
8. Differentiate between a reducing/nonreducing sugar.
9. Extraction of DNA from onion/cauliflower
10. To synthesise aspirin by acetylation of salicylic acid and compare it with the ingredient of an aspirin tablet by TLC.

Recommended Texts:

Skill Enhancement Course (any four) (Credit: 02 each)- SEC1 to SEC4

Physics

PHYSICS WORKSHOP SKILL
(Credits: 02)
30 Lectures

The aim of this course is to enable the students to familiar and experience with various mechanical and electrical tools through hands-on mode

Introduction: Measuring units, conversion to SI and CGS. Familiarization with meter scale, Vernier calliper, Screw gauge and their utility. Measure the dimension of a solid block, volume of cylindrical beaker/glass, diameter of a thin wire, thickness of metal sheet, etc. Use of Sextant to measure height of buildings, mountains, etc. (4 Lectures)

Introduction to prime movers: Mechanism, gear system, wheel, Fixing of gears with motor axel. Lever mechanism, Lifting of heavy weight using lever. braking systems, pulleys, working principle of power generation systems. Demonstration of pulley experiment. (6 Lectures)

Reference Books:

- Performance and design of AC machines – M.G. Say, ELBS Edn.

COMPUTATIONAL PHYSICS
The aim of this course is not just to teach computer programming and numerical analysis but to emphasize its role in solving problems in Physics.

- Highlights the use of computational methods to solve physical problems
- Use of computer language as a tool in solving physics problems (applications)
- Course will consist of hands on training on the Problem solving on Computers.

Introduction: Importance of computers in Physics, paradigm for solving physics problems for solution. Usage of linux as an Editor. **Algorithms and Flowcharts:** Algorithm: Definition, properties and development. Flowchart: Concept of flowchart, symbols, guidelines, types. Examples: Cartesian to Spherical Polar Coordinates, Roots of Quadratic Equation, Sum of two matrices, Sum and Product of a finite series, calculation of sin (x) as a series, algorithm for plotting (1) lissajous figures and (2) trajectory of a projectile thrown at an angle with the horizontal. (4 Lectures)

Control Statements: Types of Logic (Sequential, Selection, Repetition), Branching Statements (Logical IF, Arithmetic IF, Block IF, Nested Block IF, SELECT CASE and ELSE IF Ladder statements), Looping Statements (DO-CONTINUE, DO-ENDDO, DO-WHILE, Implied and Nested DO Loops), Jumping Statements (Unconditional GOTO, Computed GOTO, Assigned GOTO) Subscripted Variables (Arrays: Types of Arrays, DIMENSION Statement, Reading and Writing Arrays), Functions and Subroutines (Arithmetic Statement Function, Function Subprogram and Subroutine), RETURN, CALL, COMMON and EQUIVALENCE Statements), Structure, Disk I/O Statements, open a file, writing in a file, reading from a file. Examples from physics problems.

Programming:
1. Exercises on syntax on usage of FORTRAN
2. Usage of GUI Windows, Linux Commands, familiarity with DOS commands and working in an editor to write sources codes in FORTRAN.
3. To print out all natural even/ odd numbers between given limits.
4. To find maximum, minimum and range of a given set of numbers.
5. Calculating Euler number using exp(x) series evaluated at x=1 (6 Lectures)

Scientific word processing: Introduction to LaTeX: TeX/LaTeX word processor, preparing a basic LaTeX file, Document classes, Preparing an input file for LaTeX, Compiling LaTeX File, LaTeX tags for creating different environments, Defining LaTeX commands and environments, Changing the type style, Symbols from other languages.

Equation representation: Formulae and equations, Figures and other floating bodies, Lining in columns- Tabbing and tabular environment, Generating table of contents,
bibliography and citation, Making an index and glossary, List making environments, Fonts, Picture environment and colors, errors. (6 Lectures)

Visualization: Introduction to graphical analysis and its limitations. Introduction to Gnuplot. importance of visualization of computational and computational data, basic Gnuplot commands: simple plots, plotting data from a file, saving and exporting, multiple data sets per file, physics with Gnuplot (equations, building functions, user defined variables and functions), Understanding data with Gnuplot

Hands on exercises:
1. To compile a frequency distribution and evaluate mean, standard deviation etc.
2. To evaluate sum of finite series and the area under a curve.
3. To find the product of two matrices
4. To find a set of prime numbers and Fibonacci series.
5. To write program to open a file and generate data for plotting using Gnuplot.
6. Plotting trajectory of a projectile projected horizontally.
7. Plotting trajectory of a projectile projected making an angle with the horizontally.
8. Creating an input Gnuplot file for plotting a data and saving the output for seeing on the screen. Saving it as an eps file and as a pdf file.
9. To find the roots of a quadratic equation.
10. Motion of a projectile using simulation and plot the output for visualization.
11. Numerical solution of equation of motion of simple harmonic oscillator and plot the outputs for visualization.
12. Motion of particle in a central force field and plot the output for visualization. (9 Lectures)

Reference Books:
- Computer Programming in Fortran 77”. V. Rajaraman (Publisher:PHI).
- Gnuplot in action: understanding data with graphs, Philip K Janert, (Manning 2010)

ELECTRICAL CIRCUIT NETWORK SKILLS
(Credits: 02)
Theory: 30 Lectures
The aim of this course is to enable the students to design and trouble shoots the electrical circuits, networks and appliances through hands-on mode

Generators and Transformers: DC Power sources. AC/DC generators. Inductance, capacitance, and impedance. Operation of transformers. (3 Lectures)

Electric Motors: Single-phase, three-phase & DC motors. Basic design. Interfacing DC or AC sources to control heaters & motors. Speed & power of ac motor. (4 Lectures)

Solid-State Devices: Resistors, inductors and capacitors. Diode and rectifiers. Components in Series or in shunt. Response of inductors and capacitors with DC or AC sources (3 Lectures)

Reference Books:
- A text book in Electrical Technology - B L Theraja - S Chand & Co.
- A text book of Electrical Technology - A K Theraja
- Performance and design of AC machines - M G Say ELBS Edn.

BASIC INSTRUMENTATION SKILLS (Credits: 02)
Theory: 30 Lectures
This course is to get exposure with various aspects of instruments and their usage through hands-on mode. Experiments listed below are to be done in continuation of the topics.

Basic of Measurement: Instruments accuracy, precision, sensitivity, resolution range etc. Errors in measurements and loading effects. Multimeter: Principles of measurement of
dc voltage and dc current, ac voltage, ac current and resistance. Specifications of a
multimeter and their significance.

Electronic Voltmeter: Advantage over conventional multimeter for voltage
measurement with respect to input impedance and sensitivity. Principles of voltage,
measurement (block diagram only). Specifications of an electronic Voltmeter/ Multimeter
and their significance. **AC millivoltmeter:** Type of AC millivoltmeters: Amplifier-
rectifier, and rectifier- amplifier. Block diagram ac millivoltmeter, specifications and their
significance.

Cathode Ray Oscilloscope: Block diagram of basic CRO. Construction of CRT, Electron
gun, electrostatic focusing and acceleration (Explanation only— no mathematical
treatment), brief discussion on screen phosphor, visual persistence & chemical
composition. Time base operation, synchronization. Front panel controls. Specifications
of a CRO and their significance.

Use of CRO for the measurement of voltage (dc and ac frequency, time period. Special
features of dual trace, introduction to digital oscilloscope, probes. Digital storage
Oscilloscope: Block diagram and principle of working.

Signal Generators and Analysis Instruments: Block diagram, explanation and
specifications of low frequency signal generators. pulse generator, and function generator.
Brief idea for testing, specifications. Distortion factor meter, wave analysis.

Impedance Bridges & Q-Meters: Block diagram of bridge. working principles of basic
(balancing type) RLC bridge. Specifications of RLC bridge. Block diagram & working
principles of a Q- Meter. Digital LCR bridges.

Digital Instruments: Principle and working of digital meters. Comparison of analog &
digital instruments. Characteristics of a digital meter. Working principles of digital
voltmeter.

Digital Multimeter: Block diagram and working of a digital multimeter. Working
principle of time interval, frequency and period measurement using universal counter/
frequency counter, time- base stability, accuracy and resolution.

The test of lab skills will be of the following test items:

1. Use of an oscilloscope.
2. CRO as a versatile measuring device.
3. Circuit tracing of Laboratory electronic equipment,
4. Use of Digital multimeter/VTVM for measuring voltages
5. Circuit tracing of Laboratory electronic equipment,
7. Study the layout of receiver circuit.
8. Trouble shooting a circuit
9. Balancing of bridges

Laboratory Exercises:

1. To observe the loading effect of a multimeter while measuring voltage across a
 low resistance and high resistance.
2. To observe the limitations of a multimeter for measuring high frequency voltage
and currents.
3. To measure Q of a coil and its dependence on frequency, using a Q-meter.
4. Measurement of voltage, frequency, time period and phase angle using CRO.
5. Measurement of time period, frequency, average period using universal counter/frequency counter.
6. Measurement of rise, fall and delay times using a CRO.

Open Ended Experiments:
1. Using a Dual Trace Oscilloscope
2. Converting the range of a given measuring instrument (voltmeter, ammeter)

Reference Books:
- A text book in Electrical Technology - B L Theraja - S Chand and Co.
- Performance and design of AC machines - M G Say ELBS Edn.
- Electronic Devices and circuits, S. Salivahanan & N. S.Kumar, 3rd Ed., 2012, Tata Mc-Graw Hill
- Electronic Devices, 7/e Thomas L. Floyd, 2008, Pearson India

RENEWABLE ENERGY AND ENERGY HARVESTING
(Credits: 02)

Theory: 30 Lectures
The aim of this course is not just to impart theoretical knowledge to the students but to provide them with exposure and hands-on learning wherever possible

Fossil fuels and Alternate Sources of energy: Fossil fuels and Nuclear Energy, their limitation, need of renewable energy, non-conventional energy sources. An overview of developments in Offshore Wind Energy, Tidal Energy, Wave energy systems, Ocean Thermal Energy Conversion, solar energy, biomass, biochemical conversion, biogas generation, geothermal energy tidal energy, Hydroelectricity. (3 Lectures)

Solar energy: Solar energy, its importance, storage of solar energy, solar pond, non convective solar pond, applications of solar pond and solar energy, solar water heater, flat plate collector, solar distillation, solar cooker, solar green houses, solar cell, absorption air conditioning. Need and characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, and sun tracking systems. (6 Lectures)

Wind Energy harvesting: Fundamentals of Wind energy, Wind Turbines and different electrical machines in wind turbines, Power electronic interfaces, and grid interconnection topologies. (3 Lectures)

and Statistics, Wave Energy Devices.

Hydro Energy: Hydropower resources, hydropower technologies, environmental impact of hydro power sources.

Piezoelectric Energy harvesting: Introduction, Physics and characteristics of piezoelectric effect, materials and mathematical description of piezoelectricity, Piezoelectric parameters and modeling piezoelectric generators, Piezoelectric energy harvesting applications, Human power

Electromagnetic Energy Harvesting: Linear generators, physics mathematical models, recent applications

Carbon captured technologies, cell, batteries, power consumption

Environmental issues and Renewable sources of energy, sustainability.

Demonstrations and Experiments

1. Demonstration of Training modules on Solar energy, wind energy, etc.
2. Conversion of vibration to voltage using piezoelectric materials
3. Conversion of thermal energy into voltage using thermoelectric modules.

Reference Books:
• Non-conventional energy sources - G.D Rai - Khanna Publishers, New Delhi
• Solar energy - M P Agarwal - S Chand and Co. Ltd.
• J.Balfour, M.Shaw and S. Jarosek, Photovoltaics, Lawrence J Goodrich (USA).
• http://en.wikipedia.org/wiki/Renewable_energy

MECHANICAL DRAWING
(Credits: 02)
Theory: 30 Lectures

Projections: Straight lines, planes and solids. Development of surfaces of right and oblique solids. Section of solids.

(6 Lectures)

Object Projections: Orthographic projection. Interpenetration and intersection of solids. Isometric and oblique parallel projection of solids.

(4 Lectures)

CAD Drawing: Introduction to CAD and Auto CAD, precision drawing and drawing aids, Geometric shapes, Demonstrating CAD- specific skills (graphical user interface. Create, retrieve, edit, and use symbol libraries. Use inquiry commands to extract drawing data). Control entity properties. Demonstrating basic skills to produce 2-D and 3-D drawings. 3D modeling with Auto CAD (surfaces and solids), 3D modeling with sketch up, annotating in Auto CAD with text and hatching, layers, templates & design center, advanced plotting (layouts, viewports), office standards, dimensioning, internet and collaboration, Blocks, Drafting symbols, attributes, extracting data. basic printing, editing tools, Plot/Print drawing to appropriate scale.

(16 Lectures)

Reference Books:
- K. Venugopal, and V. Raja Prabhu. Engineering Graphic, New Age International

Radiation Safety
(Credits: 02)
Theory: 30 Lectures

The aim of this course is for awareness and understanding regarding radiation hazards and safety. The list of laboratory skills and experiments listed below the course are to be done in continuation of the topics

Basics of Atomic and Nuclear Physics: Basic concept of atomic structure; X rays characteristic and production; concept of bremsstrahlung and auger electron, The composition of nucleus and its properties, mass number, isotopes of element, spin, binding energy, stable and unstable isotopes, law of radioactive decay, Mean life and half life, basic concept of alpha, beta and gamma decay, concept of cross section and kinematics of nuclear reactions, types of nuclear reaction, Fusion, fission.

(6 Lectures)

(7 Lectures)
Radiation detection and monitoring devices: Radiation Quantities and Units: Basic idea of different units of activity, KERMA, exposure, absorbed dose, equivalent dose, effective dose, collective equivalent dose, Annual Limit of Intake (ALI) and derived Air Concentration (DAC). **Radiation detection:** Basic concept and working principle of gas detectors (Ionization Chambers, Proportional Counter, Multi-Wire Proportional Counters (MWPC) and Gieger Muller Counter), Scintillation Detectors (Inorganic and Organic Scintillators), Solid States Detectors and Neutron Detectors, Thermo luminescent Dosimetry. (7 Lectures)

Application of nuclear techniques: Application in medical science (e.g., MRI, PET, Projection Imaging Gamma Camera, radiation therapy), Archaeology, Art, Crime detection, Mining and oil. **Industrial Uses:** Tracing, Gauging, Material Modification, Sterization, Food preservation. (5 Lectures)

Experiments:
1. Study the background radiation levels using Radiation meter
2. Study of characteristics of GM tube and determination of operating voltage and plateau length using background radiation as source (without commercial source).
4. Study of radiation in various materials (e.g. KSO4 etc.). Investigation of possible radiation in different routine materials by operating GM at operating voltage.
7. Gamma spectrum of Gas Light mantle (Source of Thorium)

Reference Books:
2. G.F.Knoll, Radiation detection and measurements
3. Thermoluminescence Dosimetry, Mcknlay, A.F., Bristol, Adam Hilger (Medical Physics Handbook 5)
8. NCRP, ICRP, ICRU, IAEA, AERB Publications.

__

APPLIED OPTICS

(Credits: 02)

THEORY: 30 Lectures

Theory includes only qualitative explanation. Minimum five experiments should be performed covering minimum three sections.

<table>
<thead>
<tr>
<th>(i) Sources and Detectors (9 Periods)</th>
</tr>
</thead>
</table>

Experiments on Lasers:

a. Determination of the grating radial spacing of the Compact Disc (CD) by reflection using He-Ne or solid state laser.

b. To find the width of the wire or width of the slit using diffraction pattern obtained by a He-Ne or solid state laser.

c. To find the polarization angle of laser light using polarizer and analyzer

d. Thermal expansion of quartz using laser

Experiments on Semiconductor Sources and Detectors:

a. V-I characteristics of LED

b. Study the characteristics of solid state laser

c. Study the characteristics of LDR

d. Photovoltaic Cell

e. Characteristics of IR sensor
(ii) Fourier Optics (6 Periods)
Concept of Spatial frequency filtering, Fourier transforming property of a thin lens

Experiments on Fourier Optics:

a. Fourier optic and image processing
1. Optical image addition/subtraction
2. Optical image differentiation
3. Fourier optical filtering
4. Construction of an optical 4f system

b. Fourier Transform Spectroscopy
Fourier Transform Spectroscopy (FTS) is a powerful method for measuring emission and absorption spectra, with wide application in atmospheric remote sensing, NMR spectrometry and forensic science.

Experiment:
To study the interference pattern from a Michelson interferometer as a function of mirror separation in the interferometer. The resulting interferogram is the Fourier transform of the power spectrum of the source. Analysis of experimental interferograms allows one to determine the transmission characteristics of several interference filters. Computer simulation can also be done.

(iii) Holography (6 Periods)
Basic principle and theory: coherence, resolution, Types of holograms, white light reflection hologram, application of holography in microscopy, interferometry, and character recognition

Experiments on Holography and interferometry:

1. Recording and reconstructing holograms
2. Constructing a Michelson interferometer or a Fabry Perot interferometer
3. Measuring the refractive index of air
4. Constructing a Sagnac interferometer
5. Constructing a Mach-Zehnder interferometer
6. White light Hologram

(iv) Photonics: Fibre Optics (9 Periods)
Optical fibres and their properties, Principal of light propagation through a fibre, The numerical aperture, Attenuation in optical fibre and attenuation limit, Single mode and multimode fibres, Fibre optic sensors: Fibre Bragg Grating

Experiments on Photonics: Fibre Optics

a. To measure the numerical aperture of an optical fibre
b. To study the variation of the bending loss in a multimode fibre
c. To determine the mode field diameter (MFD) of fundamental mode in a single-mode fibre by measurements of its far field Gaussian pattern
d. To measure the near field intensity profile of a fibre and study its refractive index profile
e. To determine the power loss at a splice between two multimode fibre

Reference Books:
WEATHER FORECASTING
(Credits: 02)
Theory: 30 Lectures
The aim of this course is not just to impart theoretical knowledge to the students but to enable them to develop an awareness and understanding regarding the causes and effects of different weather phenomenon and basic forecasting techniques

Introduction to atmosphere: Elementary idea of atmosphere: physical structure and composition; compositional layering of the atmosphere; variation of pressure and temperature with height; air temperature; requirements to measure air temperature; temperature sensors: types; atmospheric pressure: its measurement; cyclones and anticyclones: its characteristics. (9 Periods)

Measuring the weather: Wind; forces acting to produce wind; wind speed direction: units, its direction; measuring wind speed and direction; humidity, clouds and rainfall, radiation: absorption, emission and scattering in atmosphere; radiation laws. (4 Periods)

Weather systems: Global wind systems; air masses and fronts: classifications; jet streams; local thunderstorms; tropical cyclones: classification; tornadoes; hurricanes. (3 Periods)

Climate and Climate Change: Climate: its classification; causes of climate change; global warming and its outcomes; air pollution; aerosols, ozone depletion, acid rain, environmental issues related to climate. (6 Periods)

Basics of weather forecasting: Weather forecasting: analysis and its historical background; need of measuring weather; types of weather forecasting; weather forecasting methods; criteria of choosing weather station; basics of choosing site and exposure; satellites observations in weather forecasting; weather maps; uncertainty and predictability; probability forecasts. (8 Periods)

Demonstrations and Experiments:
1. Study of synoptic charts & weather reports, working principle of weather station.
2. Processing and analysis of weather data:
(a) To calculate the sunniest time of the year.
(b) To study the variation of rainfall amount and intensity by wind direction.
(c) To observe the sunniest/driest day of the week.
(d) To examine the maximum and minimum temperature throughout the year.
(e) To evaluate the relative humidity of the day.
(f) To examine the rainfall amount month wise.

4. Formats and elements in different types of weather forecasts/ warning (both aviation and non aviation)

Reference books:

Chemistry
IT SKILLS FOR CHEMISTS
(Credits: 02)
30 Lectures

Mathematics

Fundamentals, mathematical functions, polynomial expressions, logarithms, the exponential function, units of a measurement, interconversion of units, constants and variables, equation of a straight line, plotting graphs.

Uncertainty in experimental techniques: Displaying uncertainties, measurements in chemistry, decimal places, significant figures, combining quantities.

Algebraic operations on real scalar variables (e.g. manipulation of van der Waals equation in different forms). Roots of quadratic equations analytically and iteratively (e.g. pH of a weak acid). Numerical methods of finding roots (Newton-Raphson, binary–bisection, e.g. pH of a weak acid not ignoring the ionization of water, volume of a van der Waals gas, equilibrium constant expressions).

Differential calculus: The tangent line and the derivative of a function, numerical differentiation (e.g., change in pressure for small change in volume of a van der Waals gas, potentiometric titrations).

Numerical integration (Trapezoidal and Simpson’s rule, e.g. entropy/enthalpy change from heat capacity data).

Computer programming:

Constants, variables, bits, bytes, binary and ASCII formats, arithmetic expressions, hierarchy of operations, inbuilt functions. Elements of the BASIC language. BASIC keywords and commands. Logical and relative operators. Strings and graphics. Compiled versus interpreted languages. Debugging. Simple programs using these concepts. Matrix addition and multiplication. Statistical analysis.

BASIC programs for curve fitting, numerical differentiation and integration (Trapezoidal rule, Simpson’s rule), finding roots (quadratic formula, iterative, Newton-Raphson method).

HANDS ON

Introductory writing activities: Introduction to word processor and structure drawing (ChemSketch) software. Incorporating chemical structures, chemical
equations, expressions from chemistry (e.g. Maxwell-Boltzmann distribution law, Bragg’s law, van der Waals equation, etc.) into word processing documents.

Handling numeric data: Spreadsheet software (Excel), creating a spreadsheet, entering and formatting information, basic functions and formulae, creating charts, tables and graphs. Incorporating tables and graphs into word processing documents. Simple calculations, plotting graphs using a spreadsheet (Planck’s distribution law, radial distribution curves for hydrogenic orbitals, gas kinetic theory- Maxwell-Boltzmann distribution curves as function of temperature and molecular weight), spectral data, pressure-volume curves of van der Waals gas (van der Waals isotherms), data from phase equilibria studies. Graphical solution of equations.

Numeric modelling: Simulation of pH metric titration curves. Excel functions LINEST and Least Squares. Numerical curve fitting, linear regression (rate constants from concentration-time data, molar extinction coefficients from absorbance data), numerical differentiation (e.g. handling data from potentiometric and pH metric titrations, pKₐ of weak acid), integration (e.g. entropy/enthalpy change from heat capacity data).

Statistical analysis: Gaussian distribution and Errors in measurements and their effect on data sets. Descriptive statistics using Excel. Statistical significance testing: The t test. The F test.

Presentation: Presentation graphics

Reference Books:

BASIC ANALYTICAL CHEMISTRY

(Credits: 02)

30 Lectures
Introduction: Introduction to Analytical Chemistry and its interdisciplinary nature. Concept of sampling. Importance of accuracy, precision and sources of error in analytical measurements. Presentation of experimental data and results, from the point of view of significant figures.

Analysis of soil: Composition of soil, Concept of pH and pH measurement, Complexometric titrations, Chelation, Chelating agents, use of indicators

a. Determination of pH of soil samples.
b. Estimation of Calcium and Magnesium ions as Calcium carbonate by complexometric titration.

Analysis of water: Definition of pure water, sources responsible for contaminating water, water sampling methods, water purification methods.

a. Determination of pH, acidity and alkalinity of a water sample.
b. Determination of dissolved oxygen (DO) of a water sample.

Analysis of food products: Nutritional value of foods, idea about food processing and food preservations and adulteration.

a. Identification of adulterants in some common food items like coffee powder, asafoetida, chilli powder, turmeric powder, coriander powder and pulses, etc.
b. Analysis of preservatives and colouring matter.

Chromatography: Definition, general introduction on principles of chromatography, paper chromatography, TLC etc.

a. Paper chromatographic separation of mixture of metal ion (Fe$^{3+}$ and Al$^{3+}$).
b. To compare paint samples by TLC method.

Ion-exchange: Column, ion-exchange chromatography etc.
Determination of ion exchange capacity of anion / cation exchange resin (using batch procedure if use of column is not feasible).

Analysis of cosmetics: Major and minor constituents and their function

a. Analysis of deodorants and antiperspirants, Al, Zn, boric acid, chloride, sulphate.
b. Determination of constituents of talcum powder: Magnesium oxide, Calcium oxide, Zinc oxide and Calcium carbonate by complexometric titration.

Suggested Applications (Any one):

a. To study the use of phenolphthalein in trap cases.
b. To analyze arson accelerants.
c. To carry out analysis of gasoline.

Suggested Instrumental demonstrations:

a. Estimation of macro nutrients: Potassium, Calcium, Magnesium in soil samples by flame photometry.
b. Spectrophotometric determination of Iron in Vitamin / Dietary Tablets.
c. Spectrophotometric Identification and Determination of Caffeine and Benzoic Acid in Soft Drink.

Reference Books:

CHEMICAL TECHNOLOGY & SOCIETY
(Credits: 02)
Theory: 30 Lectures

Chemical Technology

Basic principles of distillation, solvent extraction, solid-liquid leaching and liquid-liquid extraction, separation by absorption and adsorption. An introduction into the scope of different types of equipment needed in chemical technology, including reactors, distillation columns, extruders, pumps, mills, emulgators. Scaling up operations in chemical industry. Introduction to clean technology.

Society

Exploration of societal and technological issues from a chemical perspective. Chemical and scientific literacy as a means to better understand topics like air and water (and the trace materials found in them that are referred to as pollutants); energy from natural sources (i.e. solar and renewable forms), from fossil fuels and from nuclear fission; materials like plastics and polymers and their natural analogues, proteins and nucleic acids, and molecular reactivity and interconversions from simple examples like combustion to complex instances like genetic engineering and the manufacture of drugs.

Reference Book:
CHEMOINFORMATICS
(Credits: 02)
Theory: 30 Lectures

Introduction to Chemoinformatics: History and evolution of chemoinformatics, Use of chemoinformatics, Prospects of chemoinformatics, Molecular Modelling and Structure elucidation.

Representation of molecules and chemical reactions: Nomenclature, Different types of notations, SMILES coding, Matrix representations, Structure of Molfiles and Sdfiles, Libraries and toolkits, Different electronic effects, Reaction classification.

Searching chemical structures: Full structure search, sub-structure search, basic ideas, similarity search, three dimensional search methods, basics of computation of physical and chemical data and structure descriptors, data visualization.

Applications: Prediction of Properties of Compounds; Linear Free Energy Relations; Quantitative Structure-Property Relations; Descriptor Analysis; Model Building; Modeling Toxicity; Structure-Spectra correlations; Prediction of NMR, IR and Mass spectra; Computer Assisted Structure elucidations; Computer Assisted Synthesis Design, Introduction to drug design; Target Identification and Validation; Lead Finding and Optimization; Analysis of HTS data; Virtual Screening; Design of Combinatorial Libraries; Ligand-Based and Structure Based Drug design; Application of Chemoinformatics in Drug Design.

Hands-on Exercises

Reference Books:

BUSINESS SKILLS FOR CHEMISTS
(Credits: 02)
Theory: 30 Lectures
INTELLECTUAL PROPERTY RIGHTS (IPR)
(Credits: 02)

Theory: 30 Lectures
In this era of liberalization and globalization, the perception about science and its practices has undergone dramatic change. The importance of protecting the scientific discoveries, with commercial potential or the intellectual property rights is being discussed at all levels – statutory, administrative, and judicial. With India ratifying the WTO agreement, it has become obligatory on its part to follow a minimum acceptable standard for protection and enforcement of intellectual property rights. The purpose of this course is to apprise the students about the multifaceted dimensions of this issue.

Introduction to Intellectual Property:
Historical Perspective, Different Types of IP, Importance of protecting IP.

Copyrights
Introduction, How to obtain, Differences from Patents.

Trade Marks
Introduction, How to obtain, Different types of marks – Collective marks, certification marks, service marks, Trade names, etc.
Differences from Designs.

Patents

Historical Perspective, Basic and associated right, WIPO, PCT system, Traditional Knowledge, Patents and Healthcare – balancing promoting innovation with public health, Software patents and their importance for India.

Geographical Indications

Definition, rules for registration, prevention of illegal exploitation, importance to India.

Industrial Designs

Definition, How to obtain, features, International design registration.

Layout design of integrated circuits

Circuit Boards, Integrated Chips, Importance for electronic industry.

Trade Secrets

Introduction and Historical Perspectives, Scope of Protection, Risks involved and legal aspects of Trade Secret Protection.

Different International agreements

(a) Word Trade Organization (WTO):

(i) General Agreement on Tariffs & Trade (GATT), Trade Related Intellectual Property Rights (TRIPS) agreement

(ii) General Agreement on Trade related Services (GATS)

(iii) Madrid Protocol

(iv) Berne Convention

(v) Budapest Treaty

(b) Paris Convention

WIPO and **TRIPS, IPR** and Plant Breeders Rights, IPR and Biodiversity

Reference Books:

ANALYTICAL CLINICAL BIOCHEMISTRY
(Credits: 02)

THEORY: 30 Lectures

Basic understanding of the structures, properties and functions of carbohydrates, lipids and proteins:

Review of concepts studied in the core course:

Carbohydrates: Biological importance of carbohydrates, Metabolism, Cellular currency of energy (ATP), Glycolysis, Alcoholic and Lactic acid fermentations, Krebs cycle.

Isolation and characterization of polysaccharides.

Proteins: Classification, biological importance; Primary and secondary and tertiary structures of proteins: \(\alpha \)-helix and \(\beta \)-pleated sheets, Isolation, characterization, denaturation of proteins.

Enzymes: Nomenclature, Characteristics (mention of Ribozymes), Classification; Active site, Mechanism of enzyme action, Stereospecificity of enzymes, Coenzymes and cofactors, Enzyme inhibitors, Introduction to Biocatalysis: Importance in “Green Chemistry” and Chemical Industry.

Lipids: Classification. Biological importance of triglycerides and phosphoglycerides and cholesterol; Lipid membrane, Liposomes and their biological functions and underlying applications.

Lipoproteins.

Properties, functions and biochemical functions of steroid hormones.

Biochemistry of peptide hormones.
Structure of DNA (Watson-Crick model) and RNA, Genetic Code, Biological roles of DNA and RNA: Replication, Transcription and Translation, Introduction to Gene therapy.

Enzymes: Nomenclature, classification, effect of pH, temperature on enzyme activity, enzyme inhibition.

Biochemistry of disease: A diagnostic approach by blood/ urine analysis.

Blood: Composition and functions of blood, blood coagulation. Blood collection and preservation of samples. Anaemia, Regulation, estimation and interpretation of data for blood sugar, urea, creatinine, cholesterol and bilirubin.

Urine: Collection and preservation of samples. 6. Formation of urine. Composition and estimation of constituents of normal and pathological urine.

Practicals

Identification and estimation of the following:
1. Carbohydrates – qualitative and quantitative.
2. Lipids – qualitative.
3. Determination of the iodine number of oil.
4. Determination of the saponification number of oil.
5. Determination of cholesterol using Liebermann- Burchard reaction.
7. Isolation of protein.
8. Determination of protein by the Biuret reaction.
9. Determination of nucleic acids

Reference Books:
- T.G. Cooper: Tool of Biochemistry.
- Alan H G Owenlock: Varley’s Practical Clinical Biochemistry.

GREEN METHODS IN CHEMISTRY

(Credits: 02)

Theory: 30 Lectures

Tools of Green chemistry, Twelve principles of Green Chemistry, with examples.

The following Real world Cases in Green Chemistry should be discussed:
1. A green synthesis of ibuprofen which creates less waste and fewer byproducts (Atom economy).
2. Surfactants for Carbon Dioxide – replacing smog producing and ozone depleting solvents with CO₂ for precision cleaning and dry cleaning of garments.
3. Environmentally safe antifoulant.
4. CO₂ as an environmentally friendly blowing agent for the polystyrene foam sheet packaging market.
5. Using a catalyst to improve the delignifying (bleaching) activity of hydrogen peroxide.
7. Rightfit pigment: synthetic azopigments to replace toxic organic and inorganic pigments.

Reference Books:

CHEMISTRY OF COSMETICS & PERFUMES
(Credits: 02)
30 Lectures

A general study including preparation and uses of the following: Hair dye, hair spray, shampoo, suntan lotions, face powder, lipsticks, talcum powder, nail enamel, creams (cold, vanishing and shaving creams), antiperspirants and artificial flavours. Essential oils and their importance in cosmetic industries with reference to Eugenol, Geraniol, sandalwood oil, eucalyptus, rose oil, 2-phenyl ethyl alcohol, Jasmone, Civetone, Muscone.

Practicals
1. Preparation of talcum powder.
2. Preparation of shampoo.
3. Preparation of enamels.
4. Preparation of hair remover.
5. Preparation of face cream.
6. Preparation of nail polish and nail polish remover.

Reference Books:

PESTICIDE CHEMISTRY
(Credits: 02)
30 Lectures

General introduction to pesticides (natural and synthetic), benefits and adverse effects, changing concepts of pesticides, structure activity relationship, synthesis and technical manufacture and uses of representative pesticides in the following classes: Organochlorines (DDT, Gammexene,); Organophosphates (Malathion, Parathion); Carbamates (Carbofuran and carbaryl); Quinones (Chloranil), Anilides (Alachlor and Butachlor).

Practicals
2. To calculate acidity/alkalinity in given sample of pesticide formulations as per BIS specifications.

3. Preparation of simple organophosphates, phosphonates and thiophosphates

Reference Book:

FUEL CHEMISTRY
(Credits: 02)
30 Lectures

Review of energy sources (renewable and non-renewable). Classification of fuels and their calorific value.

Coal: Uses of coal (fuel and nonfuel) in various industries, its composition, carbonization of coal. Coal gas, producer gas and water gas—composition and uses. Fractionation of coal tar, uses of coal tar bases chemicals, requisites of a good metallurgical coke, Coal gasification (Hydro gasification and Catalytic gasification), Coal liquefaction and Solvent Refining.

Petroleum and Petrochemical Industry: Composition of crude petroleum, Refining and different types of petroleum products and their applications.

Fractional Distillation (Principle and process), Cracking (Thermal and catalytic cracking), Reforming Petroleum and non-petroleum fuels (LPG, CNG, LNG, bio-gas, fuels derived from biomass), fuel from waste, synthetic fuels (gaseous and liquids), clean fuels. Petrochemicals: Vinyl acetate, Propylene oxide, Isoprene, Butadiene, Toluene and its derivatives Xylene.

Lubricants: Classification of lubricants, lubricating oils (conducting and non-conducting) Solid and semisolid lubricants, synthetic lubricants.

Properties of lubricants (viscosity index, cloud point, pore point) and their determination.

Reference Books: